An introduction to the spaMM package for
mixed models

Francois Rousset

August 30, 2023

The spaMM package fits mixed models. It was developed first to fit models
with spatial correlations, which commonly occur in ecology. These correla-
tions can be taken into account in generalized linear mixed models (GLMMs).
However, there has been a dearth of validated software for making inferences
under spatial GLMMs. This package has been first designed to fill this gap
(Rousset and Ferdy, 2014). It now allows inferences under models with or
without spatially-correlated random effects. It has been extended to han-
dle multivariate-response models, and conditional response families beyond
generalized linear models. Variation in residual variance (heteroscedasticity)
can itself be represented by a mixed-effect model. Among spatial models, it
can for example fit both random effects with the classical Matérn correlation
function (Matérn, 1960; Stein, 1999), and grid-based approximations of this
model (Lindgren et al., 2011), for which INLA (Lindgren and Rue, 2015) is
known.

spaMM thus provides a common interface for performing different analyses
currently performed by different packages or difficult to perform by other
means. It even provides a robust alternative function spaMM_glm() to the
glm() function, suitable when the latter diverges or fails to find good starting
values. Initial development drew inspiration from work by Lee and Nelder on
h-likelihood, and it retains from that work several distinctive features, such
as the ability to fit models with non-gaussian random effects, structured dis-
persion models, and implementation of several variants of Laplace and PQL
approximations. However, later extensions mean that various alternative
methods have been implemented.

As a first introduction, this document does not address all aspects of in-
ference. A series of examples is presented in order to introduce the main
functions, different types of models (spatial LMMs, GLMMs, and the wider

classes allowing non-gaussian random effects and more diverse response fami-
lies), and some of the correlation structures available for random effects. Ad-
ditional sections describe the approximations of likelihood used, the Conway-
Maxwell-Poisson response family, multivariate-response models, some rarely
needed controls of spaMM computations, and provide comparisons with alter-
native software.

The following concepts are assumed at least superficially known: gener-
alized linear models (GLM), the basic syntax of the glm procedure in R, the
concept of mixed-effect model, formal inference using likelihood-ratio tests,
and the Greek alphabet (in particular, § for fixed-effect coefficients, ¢ for
the variance of residual error, A for the variance of random effects, but also
1 and n to describe expectations of the response, and p and v for correlation
parameters).

Contents
1 Quick start for non-spatial models 3
2 An example of geostatistical analysis (spatial LMM) 4
2.1 Understanding and fitting the spatial model 4
2.2 Prediction 9
2.2.1 Point prediction 9
2.2.2 Prediction variance 9
3 General features of spaMM 11
3.1 Model formulation 11
3.2 Response families L. 13
321 Overview 13
3.2.2 The COMPoisson family 13
3.3 The main procedures in spaMM 14
3.3.1 Fitting functions L. 14
3.3.2 Post-fit functions L 15
3.4 Multiple comparisons 17
3.5 Control of the fitting methods 19
3.5.1 Objective functions in ML, REML and PQL fits 19
3.5.2 Implications of REML for post-fit inferences 21
3.5.3 Inner iterations versus outer optimization. 22
3.5.4 Numerical methods 23

4

Further examples

4.1 Spatial GLMMso
4.1.1 Basicsyntax
4.1.2 A classic example with autoregressive random effects

4.2 Beta random effects and binomial logit-Beta model
4.2.1 Gamma GLMM, HGLM, and joint GLMs

4.3 Random-slope model

4.4 Multivariate response

4.5 Zero-altered (hurdle) models L.
4.5.1 Fitting o

4.5.2 Point-prediction intervals
5 Comparison with alternative software and literature results
5.1 Procedures for geostatistical models (or contrived to such us-
age): MASS: :glmmPQL, lmer, geoRglm, glmmTMB
5.2 Interpolated Markov random fields via spaMM and INLA
5.3 Gamma GLMM with non-canonical link
5.3.1 A comparison with published estimates
5.3.2 Further comparisons with glmer, and glmmTMB
5.3.3 PQLwvs. glmmPQL
5.4 Negative binomial model
Bibliography
Appendices
A Evaluation of the likelihood approximations

B

A.1 Conditional and joint log-likelihood
A.2 The gradient and Hessian matrix of conditional likelihood . . .
A.3 Expected Hessian approximation for generalized linear models
A.4 Using observed versus expected Hessian
A.5 Hands-on computation of Laplace approximations

Multivariate analyses: the aster example

Index

1

Quick start for non-spatial models

if you are used to 1me4, then you can use spaMM almost identically by calling
fitme. For example an LMM fit

data("Orthodont",package = "nlme")
library (1me4)
1fit <- lmer(distance ~ age+(agel|Subject), data = Orthodont)

becomes

data("Orthodont",package = "nlme")
library (spaMM)
spfit <- fitme(distance ~ age+(agelSubject), data = Orthodont, method="REML")

The one argument to always think about is the method argument. as de-
fault fitting methods differ among packages, and even among fitting functions
within packages. Gentle messages or warnings should attract one’s attention
on any other departure from deeply-established practice.

The story is the same for GLMMs, except that glmer has no REML
method. Thus

data(salamander)
glfit <- glmer(cbind(Mate,1-Mate) "TypeF+TypeM+TypeF*TypeM+(1|Female)
+(1|Male) ,family=binomial () ,data=salamander)

becomes

spfit <- fitme(cbind(Mate,1-Mate) "TypeF+TypeM+TypeF*TypeM+(1|Female)
+(1|Male) ,family=binomial () ,data=salamander)

spaMM is routinely checked and used on large datasets and care is taken
that it is fast. However, it is stubborn, meaning that if convergence is not
reached after some moderate computation effort, spaMM tends to try harder,
instead of terminating with a convergence warning. If you find a fit too
long, then the argument verbose=c (TRACE=TRUE) may be useful to monitor
progress of the computation. Further, fitme tries to select the fastest among
several fitting strategies, but may not always select the best one. So, if a fit
takes unduly long time, it is worth reading help(convergence).

2 An example of geostatistical analysis (spatial LMM)

2.1 Understanding and fitting the spatial model

We fit data from a simple Gaussian model, according to which each response
value y; is assumed to be of the form

4

where a fixed part fix; represents effects of known predictor variables, and b;+
e; represent two Gaussian random terms with different correlation structures:
e; is a residual error with independent values for each observation, while b;
values can be correlated among different observations.

We first generate spatially correlated Gaussian-distributed data as follows

library(MASS)
rSample <- function(nb,rho,sigma2_u,resid,intercept,slope,pairs=TRUE) {

if (pairs) {
x <- rnorm(nb/2); x <- c(x,x+0.001)
y <= rnorm(nb/2); y <- c(y,y+0.001)
} else {x <- rnorm(mb);y <- rnorm(nb)}
dist <- dist(cbind(x,y))
m <- exp(-rho*as.matrix(dist))
b <= mvrnorm(1l,rep(0,nb) ,m*sigma2_u)
pred <- sample(nb)
obs <- intercept+slope*pred + b +rnorm(nb,0,sqrt(resid))
data.frame(obs=obs,x,y,pred=pred)

set.seed(123)
dl <- rSample(nb=40,rho=3,sigma2_u=0.5,resid=0.5,intercept=-1,slope=0.1)

This has generated data in 2D (z, y) space with fixed effects fix; = —1+40.1
pred for some predictor variable pred, random effect variance 0.5, residual
error variance 0.5, and b;s whose correlations are exponentially decreasing
with distance d as exp(—3d). Using standard notation for linear models, the
fixed effects are written as X3 where 3 = (—1,0.1)" and X is the design
matrix for fixed effects, here a two-column matrix whose first column is filled
with 1 and the second with the variable pred. The random-effect variance

will be denoted A and the residual error variance will be denoted ¢.
This model can be fitted as follows:

HLM <- fitme(obs~pred+Matern(l|x+y),data=dl,fixed=1list(nu=0.5))

Here the Matern(1|x+y) formula term means that the Matérn correla-
tion model is fitted to the data (for other correlation models, see Section 3.1).
This is a very convenient model for spatial correlation, and includes the ex-
ponential exp(—pd) and the squared exponential exp(—pd?) as special cases.

The Matérn model is described by two correlation parameters, the scale
parameter p, and a “smoothness” parameter v (v = 0.5 and v — oo for
exponential and squared exponential models, respectively). By declaring
fixed=1list (nu=0.5), we have therefore fitted the model with exponential
spatial correlation exp(—pd).

The p estimate together with the fixed v are shown as rho and nu value
in the output:

summary (HLM)

formula: obs ~ pred + Matern(l | x + y)

ML: Estimation of corrPars, lambda and phi by ML.

Estimation of fixed effects by ML.

Estimation of lambda and phi by 'outer' ML, maximizing logL.
family: gaussian(link = identity)

Fixed effects (beta) ———-—--——--—-
Estimate Cond. SE t-value

(Intercept) -1.631 0.34861 -4.678

pred 0.105 0.01218 8.623

- Random effects ---———--——---—-
Family: gaussian(link = identity)

-—— Correlation parameters:
1.nu 1.rho

0.500000 2.163672

#i -—- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;

#it x+y : 0.3368

of obs: 40; # of groups: x + y, 40

- Residual variance ------—----—-
phi estimate was 0.64443

- Likelihood values --——----———---—-
#it logLik

logL (p_v(h)): -54.54889

The other parameters estimated (with standard errors) are the coefficients
beta of the fixed effects, the variance lambda (here 02) of the random effects,
and the residual variance phi (here o2). All estimates look reasonably close
to the simulated values.

The output shows the marginal log-likelihood of the fitted model, also
named as p_v(h) which more generally denotes a class of approximations
developed for marginal log-likelihood. The restricted likelihood (not shown
here) will likewise be denoted p_beta,v. For linear mixed models, p_v is ex-
actly the log-likelihood, and p_beta, v is exactly the restricted log-likelihood.

6

The confint function can be used to obtain confidence intervals from a

fitted model object, either by parametric bootstrap or for fixed effects, using
the profile likelihood

confint (HLM, "pred") ## interval for the 'pred coefficient

##
##

lower pred upper pred
0.08007909 0.13134922

In general there is no reason to assume a given v value, so we fit the full

Matérn model by removing the fixed argument:

fitme (obs~pred+Matern(l|x+y) ,data=d1)

##
##
##
##
##
##
##
##
##
#i#t
##
##
##
#i#t
##
##
##
##
##
##
#i#t
##
##

formula: obs ~ pred + Matern(l | x + y)
ML: Estimation of corrPars, lambda and phi by ML.
Estimation of fixed effects by ML.
Estimation of lambda and phi by 'outer' ML, maximizing logL.
family: gaussian(link = identity)
———————————— Fixed effects (beta) ----—--------
Estimate Cond. SE t-value
(Intercept) -1.636 0.34197 -4.784
pred 0.105 0.01216 8.630
——————————————— Random effects --—-----------—-
Family: gaussian(link = identity)
—--- Correlation parameters:
1.nu 1.rho
0.8882648 3.2336336
—--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
x+y : 0.3288
of obs: 40; # of groups: x + y, 40

—————————————— Residual variance -----—--—-----
phi estimate was 0.651654
————————————— Likelihood values ---——-—-—-—-—-
loglik
logL (p_v(h)): -54.54011

The v and p estimates now look very poor. Indeed, it is often easier to

estimate \/v/p than each of these two parameters separately.

It may also be difficult to estimate the variances A and ¢ separately,

in particular if spatial correlations are weak, as noted above. Indeed, if
b; has no correlation structure, it is not separable from the residual error

term e; unless there are repeated observations in the same spatial location,
because if (using traditional notation)! (b;) ~ N (0, ¢2I) and (e;) ~ N(0, o21),
(b; + ¢e;) ~ N[0, (67 + 02)I] is equally well explained by any ¢ and o2 with
given sum.

To illustrate another cause for poor estimation of variances, we draw a
new sample

set.seed(123)
d2 <- rSample(nb=40,rho=3,sigma2_u=0.5,resid=0.5,intercept=-1,
slope=0.1,pairs=FALSE)

In the previous simulation we had sampled pairs of adjacent locations in
space and in the new one there is no such clustering. This tends to yield
poorer estimates of A and/or ¢:

fitme (obs~pred+Matern(l|x+y),data=d2)

formula: obs ~ pred + Matern(l | x + y)

ML: Estimation of corrPars, lambda and phi by ML.

Estimation of fixed effects by ML.

Estimation of lambda and phi by 'outer' ML, maximizing logL.
family: gaussian(link = identity)

I e Fixed effects (beta) --——--——-——-
Estimate Cond. SE t-value

(Intercept) -1.1564 0.27995 -4.131

pred 0.1075 0.01088 9.883

##H Random effects —————-------—-
Family: gaussian(link = identity)

Hit --- Correlation parameters:
#i#t 1.nu 1.rho

16.66667 23.96106

--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;

#it x+y : 0.4393

of obs: 40; # of groups: x + y, 40

##t Residual variance ————————-——-
phi estimate was 0.290201

- Likelihood values -———————————-
#i#t logLik

logL (p_v(h)): -48.21512

1X ~ N(u,0?%) means that X follows a gaussian distribution with given mean and
variance.

2.2 Prediction
2.2.1 Point prediction

The predict function returns the predicted value of the response, say X,B +b,
for a new location [in space, where x are given values of the predictor vari-
ables and b; the predicted value of the spatial random effect in that location.
For a spatial Gaussian effect this is the expected value of the Gaussian de-
viate given the inferred random effects in the observed locations and the
covariances of the spatial process between the new location and the observed
locations.

In general, prediction requires as input new x values, and new z values for
each random effect (for block random effects, the grouping variable should
thus be provided; and for spatial random effects, new spatial coordinates
are required). Often one wishes to produce a nice map of predicted values
without providing new x in every possible location (e.g. Fig. 1). See the
documentation of the filled.mapMM function for critical comments on how
this is achieved.

2.2.2 Prediction variance

Prediction uncertainty can also be computed. In mixed model there is a re-
alized latent value of the random effect b and the uncertainty in the linear
prediction is often characterized by the conditional distribution, for each ob-
servation 7, of the difference between the prediction, ﬁXi+Z;i, and fix;+0b; given
the latent value b;, rather than characterized by any marginal distribution
over random draws of the random effect. Prediction uncertainty depends on
the joint conditional variation of the random effects and of the fixed effects
given the data. As an extreme example, if the fitted residual variance is
null (so that the fitted model interpolates betweeen observed points) and the
data-generating residual variance is also null, fix; + b; is known for each ob-
servation, which means that the conditional prediction variance in observed
locations is null and that uncertainties in fixed effects and random effects
must exactly balance each other.

The predict(., variances) argument, and several ad hoc functions
provides control of output of the different quantities that can measure such
uncertainty, and of their components. One can notably use get_respVar ()
to compute the response variance which is the (again, conditional) vari-
ance of the response over replicates, which is often referred to as predic-
tion variance and includes residual variance. One can use get_predVar () or
get_cPredVar() to compute the distinct prediction variance which is here

data(Loaloa)
1fit <- fitme(cbind(npos,ntot-npos) ~ elevl + elev2 + elev3 +
elev4d + maxNDVI1 + seNDVI + Matern(l|longitude+latitude),

data=Loaloa, family=binomial())

if (suppressPackageStartupMessages(require(maps,quietly=TRUE))) {

'maps' required for add.map=TRUE

filled.mapMM(1fit, add.map=TRUE, plot.axes=quote({axis(1);axis(2)}),
decorations=quote(points(pred[,coordinates],pch=15,cex=0.3)),
plot.title=title(main="Inferred prevalence, North Cameroon",
xlab="longitude", ylab="latitude"))

}

0.3

0.2

latitude

0.1

Figure 1: Plotting a map of predictions with filled.mapMM

10

the conditional variance of the linear predictor, excluding residual variance.?
get_predVar () ignores a bias term discussed by Booth and Hobert (1998)
while get_cPredVar () includes this bias, using a bootstrap procedure similar
to but more general than the one discussed by these authors. The bootstrap
procedure is computer-intensive, which may prevent its routine use for spatial
prediction problems.

3 General features of spaMM

3.1 Model formulation

The spaMM output refers to the following formulation of all models, further
illustrated in later examples. The expected response p = E(y|b) given all
realized random effects b is written as the “linear predictor”

g(p) =n=XB+b=XB+Zv (plus any offset term) (2)

where ¢ is the link function relating the linear predictor i) to the expectation
p of the response variable, and the structure of the random effects b is
described in terms of a vector v with independent elements and of a “design
matrix” Z.> v can be further described as v = f(u) where f is another link
function and the elements of u are independent realizations of some reference
distribution (e.g., gaussian). The fitting functions will provide estimates of
fixed-effect parameters, and of the random-effect parameters classified as
dispersion parameters (the variances of u; and of the residual error e;) and
correlation parameters affecting the elements of Z (v and p in the previous
examples).

In spaMM, implemented spatial random effects may follow the Matern or
the Cauchy correlation models; or follow grid-based approximations of the
Matern model (Lindgren et al., 2011, here denoted IMRF's for “Interpolated

2Here it should be emphasized that this departs from some established, but not uni-
versal, usage according to which “prediction variance” includes the residual variance, and
this is what has here been called here the response variance. The idea that the predic-
tion variance includes the residual variance is indeed emphasized in sources explaining the
difference between confidence intervals and prediction intervals. Despite the excellence of
some of these sources, such discussions may consider only fixed-effect models and thus
teach a semantics that does not provide a name for a variance of prediction that does not
include the residual variance. The “prediction intervals” in such semantics (our response
intervals) should also be distinguished from “confidence intervals for predictions”, a term
used in the literature for intervals for point predictions.

3Accordingly, the ith row of the expected response vector is denoted g(u;) = 7; =
X;8 + b; = x;3 + z;v. The i index will commonly be ignored.

11

Markov Random Fields”; see Section 5.2); or the variant introduced by Ny-
chka et al. (2015), here denoted “multilevel IRMFSs”, where several IMRF's are
controlled by common hyper-parameters. Conditional autoregressive (CAR)
models as described by an adjacency matrix can also be used in spatial anal-
yses (see example in Section 4.1.2). Implemented time-series models include
the classical AR(p) and ARMA(p, ¢) models. The AR(1) model also has a
distinct ad-hoc implementation as the AR1 autoregressive model.

spaMM can fit random effects with any given correlation matrix (using the
corrMatrix or covStruct arguments). This implies that it can fit any para-
metric correlation model once a wrapper function returning the likelihood
for given parameters is fed to an optimizing function (such as the base R
function optim, but nloptr or minga optimizers should be considered for
such purposes). This will generally be less computationally efficient than a
“canned” implementation of a procedure for estimating the correlation pa-
rameters, but can still be very useful. However, any used-defined parametric
correlation model can also be fitted efficiently if the (adventurous) user is will-
ing to provide a corrFamily constructor, which is (roughly) a set of functions
designed to interact efficiently with spaMM’s internal machinery. Several of
the random effect models more recently introduced in spaMM are indeed im-
plemented in this way, including one of the IMRF models (MaternIMRFa),
the AR(p) and ARMA(p, ¢) models, and models for dyadic interactions (see
the ranGCA and diallel documentation).

spaMM can fit random-coefficient terms (see Section 4.3) as well as compos-
ite random effects combining features of a corrMatrix() random effect and
of a random-coefficient model: see Section 4.4 for a typical application in a
quantitative-genetics model with a multivariate response. Composite random
effects combining features of a parametric correlation model such as Matern()
and of a random-coefficient model can also be fitted (The Matern(z|x+y)
syntax, for a numeric variable z, has been left undefined in past versions of
spaMM but is now interpreted as a composite random effect). In such compos-
ite random effects, the component correlation models are combined through
an outer (Kronecker) product of component correlation matrices as detailed
in help("composite-ranef"). In particular, Matern(z|x+y) means that
for each spatial location i, a pair of random values v; = (v, v;2) is assumed.
The v;;’s are correlated accross ¢ values for each j according to the Matérn
correlation model, but the two realizations v ; and v, are independent draws
of the spatial process. A pair (b;1,b;2) is then computed from each pair v;
as usual for random-slope models (section 4.3) so that the covariance among
the elements of each new pair is as specified by the random-slope covariance
matrix; and the b’s enter into the linear predictor as later shown (eq. 7).

It is possible to fit some other “autocorrelated random-coefficient” mod-

12

els by a syntax analogous to that of other random-coefficient terms, pro-
viding direct control of the elements of the Z matrix. For example, inde-
pendent Matérn effects can be fitted for males and females by using the
syntax Matern(male|x+y) + Matern(female|x+y), where male and female
are TRUE|FALSE factors (a sex effect should typically also be included in the
fixed effects in such cases). A numeric variable z can also be considered,
in which case the proper syntax is Matern(O+z|x+y), which represents an
autocorrelated random-slope term without random intercept (this syntax is
equivalent to a direct specification of heteroscedasticy of the Matérn random
effect).

These different random-effect specifications can all be combined in a
model formula.

3.2 Response families
3.2.1 Overview

spaMM fits the following response families: the base GLM families gaussian,
Gamma, poisson, binomial; the beta (beta_resp), beta-binomial (betabin)
and two negative-binomial families; zero-truncated variants of the Poisson
and negative-binomial families (see e.g. help(Tpoisson) for details); and
the COMPoisson family, which handles an underdispersion parameter (further
described below).

The negative binomial families include the non-GLM family negbini,
with linear mean-variance relationship, and the GLM family, negbin or
negbin2, with quadratic mean-variance relationship. These families have
a shape parameter, and their zero-truncated variants are handled, through a
trunc argument (see also help(Tnegbin)).

spaMM also provides some facilities for the analysis of multinomial data.
See help(multinomial) for more details.

3.2.2 The COMPoisson family

The Conway-Maxwell-Poisson family for count data is a generalization of
the Poisson family that can describe over- and underdispersion, relative to
Poisson response (e.g., Shmueli et al., 2005). The quasi-poisson method
available in the MASS package has been used for such purposes, but it is not
based on a probability model for count data. Overdispersion can also be
represented by mixed models, but underdispersion in count data is less easy
to represent, and the COMPoisson family is of particular interest in the latter

13

case. The distribution of a response y is
\Y
(3)
(y!)VCMPZ(Aa VCMP)

where Z(\, Veup) := D _peg A¥/(k!)?e¥P. The Poisson distribution is recovered
for voye = 1, in which case Z = e*, which also happens to be the mean p of
the distribution. However, for veye # 1, the mean is not e”.

spaMM implements both the canonical link, which is complicated to evalu-
ate,? and some non-canonical ones (those implemented for the Poisson family,
notably the log link). For fixed veyp, the COMPoisson family is also of the
form that can be fitted by glm (see help("COMPoisson") for examples using
glm).

The main drawback of the COMPoisson is that the Z function has no
expression in terms of standard “elementary” (efficiently implemented) func-
tions, and involves an infinite summation that must be approximated by trun-
cation. The number of terms required for accurate evaluation increases with
decreasing veyp. Further, the inverse function of Z (already needed for fitting
by glm) has no explicit expression. Altogether, this implies that (depending
on the quality of the approximations used) fitting the COMPoisson model can
be relatively slow (and perhaps inaccurate) for highly overdispersed data (or,
more precisely, for highly overdispersed conditional response). In particular,
convergence of the iteratively reweighted least square algorithm depends on
the accuracy of the approximations, so that ultimately this algorithm may
not be best suited for fitting COMpoisson models with high overdispersion.
However, it is easier to fit models on data indicative of under-dispersion

(UCMP >].)

Pr(% A, Voup) =

3.3 The main procedures in spaMM
3.3.1 Fitting functions

Five functions are available for fitting random-effect models (quick summary:
use fitme, but refer to the documentation of HLfit and HLCor for some of
its arguments):

fitme can fit models combining all the previously described features. This
includes GLMMs, where the random effects are gaussian, but also
models with non-gaussian random effects such as the Beta-binomial
of negative-binomial (see examples below). For conveniency, it can also

fit LMs and GLMs.

4From the term ylog()\) of the log-likelihood, the link is n = log(A(x)), requiring the
computation of \(u).

14

fitmv extends features of fitme to mutivariate-response models (see section
4.4).

corrHLfit was previously implemented to fit spatial models. fitme is the
recommended function now but corrHLfit should be fully functional.
The two functions differ by the range of models fitted (fitme can fit
both spatial and non-spatial models), by the names of some control
arguments (ranFix and etaFix vs. the single argument fixed), by
the default lihelihood objective for fitting random-effect parameters
(restricted likelihood for corrHLfit), and by the default algorithms
used for maximization. fitme’s default methods can be much faster,
in particular for large data sets when the residual variance model is a
single constant term (no structured dispersion).

The HLCor function will provide fits of spatial models with given correlation
parameters. Its default method is REML. Only for the CAR model it
also allows estimation of the correlation parameter. For small datasets,
it may then be faster than fitme (see further reference in Section 4.1.2),
but it is otherwise of limited interest. However, the HLCor documenta-
tion is still relevant because fitme handles some arguments (the various
correlation matrix specifiers, and control.dist) as if passed to HLCor.

HLfit is sufficient to fit non-spatial models, except families with an ad-hoc
dispersion parameter (the two negative binomial families, COMPoisson
and beta_resp) when this parameter must be estimated. Its default
method is REML, so may still be used for a number of REML fits in
documentation. One may not need to call it directly but the HLfit
documentation is still relevant (notably for arguments control .HLfit,
rand.family, and verbose) because all other fitting functions proceed
as if calling it internally. It gives its name to the class of their returned
objects (with “HL” for hierarchical likelihood). It is relatively slow
for random-coefficient models; otherwise, for small datasets, it may be
faster than fitme.

3.3.2 Post-fit functions

Post-fit inference functions notably include:

confint, to get provide confidence interval for a given parameter, either
by parametric bootstrap, or (only for fixed-effects) by an asymptotic
profile likelihood ratio.

15

LRT and fixedLRT, two slightly different interfaces to perform likelihood ra-
tio tests of fixed effects. A bootstrap procedure is implemented to cor-
rect for small sample bias of the test. By use of offset terms, fixedLRT
can also be contrived to provide more general profile likelihood ratio
confidence regions.

Classical anova tables can also be computed. The numInfo function allows
one to compute the information matrix for all parameters of a main-
response model, and a similar procedure is used internally by spaMM’s
anova method when applied to LMMs so that F-tests corrected by the
“Satterthwaite method” (as developed by Fai and Cornelius, 1996) can
be applied.

The mapMM and filled.mapMM functions provide colorful plots of the
predicted response. The predict, simulate, and update methods extend
the same-named procedures from the stats package; and extractor func-
tions logLik, fitted, fixef, ranef, vcov (and so on) comparable to same-
named functions from packages stats and nlme/lmer. get_predVar and
related functions give variance of prediction and related quantities. The
get_inits_from_fit function may be particularly useful to extract esti-
mates from one fit in a form convenient to initiate another fit.

Diagnostic plots obtained by plotting he fitted object are shown in Fig. 2.
Some are similar to those returned by a GLM fit, others would require more
explanation. However, the most important point is that these plots are sus-
pect, as they may suggest that the model is wrong when it is actually true
(as can be verified by simulation for binary GLMMs or Poisson GLMMs
with moderately large expected response values). The DHARMa package pro-
poses more reasonable diagnostic plots, which can be produced from spaMM
fit objects. However, the p-value which appears on one of them does not
correspond to a generally valid goodness-of-fit test, yet appears to be widely
overinterpreted as such a goodness-of-fit test in publications.

Of perhaps more notable interest are “partial-dependence” plots (Fig. 3),
which evaluate the effect of a given fixed-effect variable, as (by default, the
average of) predicted values on the response scale, over the empirical distri-
bution of all other fixed-effect variables in the data, and of inferred random
effects. This can be seen as the result of an experiment where specific treat-
ments (given values of the focal variable) are applied over all conditions
defined by the other fixed effects and by the inferred random effects. Thus,
apparent dependencies induced by associations between predictor variables
are avoided (see Friedman, 2001, from which the name “partial dependence
plot” is taken; or Hastie et al., 2009, Section 10.13.2). This also avoids bi-
ases of possible alternative ways of plotting effects. In particular, such biases

16

Mean model Random effects and leverages

Deviance residuals |Deviance residuals| Random effects Q-Q plot Leverages for @
0
Wt - + * + * g +he 4t ey gt
L g b . .
w © = + = @ + 4 + 4
g - . - T + 4 g ° + Q * §
H -
3 e T g - - 5 7 R N
4 I 4 + > 9 + +
g 2 + 3 + + g ° W o + R
s S n + T o+t N -] 4+
g g s M s S
3 + L i+ H © - + 8 g ot + ++
+ +
° 3 * < o g ' 3
! * o o g t + o + o+ +
T T T T ST r—T T T T | S e — — | S e —
-2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 0 10 20 30 40
Fitted Values Fitted Values Normal quantiles Index

Leverages for A

1.0
Frequency
0.8 1.0
+

0.0

Residual quantiles
0.6
+
¥
*+

o +

0.4
s

-2 -1 0 1 2

Normal quantiles Deviance residuals Index

Figure 2: Diagnostic plots produced by plot (HL1).

occur if the response link is not identity, and if averaging is performed on
the linear-predictor scale or when other variables are set to some conven-
tional value. As for other types of plots, plot_effects offers only a crude
implementation of the concept using base graphic functions, but its source
code can be adapted to your favorite graphic package (see also the ggplot
example in the documentation of that function).

3.4 Multiple comparisons

A frequently requested feature is to perform multiple comparisons of means.
It turns out that specifying coef.=fixef .HLfit makes multcomp: :glht
work on spaMM results, as in

library (multcomp)

set.seed(123)

irisr <- cbind(iris,id=sample(4,replace=TRUE,size=nrow(iris)))

irisfit <- fitme(Petal.Length ~ Species +(1|id), data=irisr,
family=Gamma(log))

summary (glht (irisfit, mcp("Species"="Tukey"), coef.=fixef.HLfit))

17

03 04

0
o
a
c
o o
o o
>
S -
= o
Q
o i\\\\l\\\\\l\\\\\\\\\\
0.0 0.2 0.4 0.6 0.8
maxNDVI1
Figure 3: Partial-dependence plots produced

plot_effects(1fit,"maxNDVI1").

18

3.5 Control of the fitting methods

This section first describes what is meant by the method argument of the
fitting functions, and some further features of the REML method to guide
(or not...) its use. It then tells a little about fitting algorithms, which can be
controlled to some extent by initial-value arguments (but one rarely has to
do that), and about controlling umerical methods for matrix computations,
which can be useful if you are dealing with large data sets fitted by models
involving unusual combinations of random effects.

3.5.1 Objective functions in ML, REML and PQL fits

The *starred® concepts mentioned in this Section are examplified in Ap-
pendix A.

LMMs can be fitted by ML or REML, here in their standard meanings:
ML maximizes (exact) marginal likelihood, and REML differs from ML as es-
timation of random-effect parameters and residual-dispersion parameters are
obtained by maximizing (exact) restricted likelihood, which is the conditional
likelihood of these parameters given (sufficient statistics for) the fixed effects.
The inferred random effect values v, often known as best linear unbiased pre-
dictions (BLUPs), can be viewed as maximizing the *joint log-likelihood* of
the data given the random effects, and of the random effects. The marginal
likelihood is a “penalized” joint likelihood, that is, the joint likelihood minus
a term deduced from the log-determinant of the matrix of second derivatives
(*Hessian matrix™) of the negative joint likelihood with respect to the ran-
dom effects (the negative Hessian is also the observed information matriz).
The restricted likelihood (for REML estimation) is similarly evaluated, ex-
cept that it uses the Hessian matrix with respect to random effects and fixed
effects.

For GLMMs, exact marginal likelihood is generally too complex to evalu-
ate and a *Laplace approximation® is widely used. The Laplace approxima-
tion to (log-)marginal likelihood takes the same form as marginal likelihood
in LMMs, that is, the joint log-likelihood (or the *h-likelihood*, Lee et al.,
2006) penalized by the log-determinant of the observed information matrix
with respect to random effect values v.

A further step taken in the h-likelihood literature is to approximate the es-
timated information matrix by its expectation under sampling of the response
vector (for estimated parameter values). The two matrices are identical for
GLM families with canonical link, but differ for non-canonical links (Mc-
Cullagh and Nelder, 1989, p.42). This approximation has been used in past
versions of spaMM and is still available as an option. But by default, spaMM

19

now use the observed information matrix. Thus, by default, the Laplace ap-
proximation used by spaMM is now identical to that used in packages based on
automatic differentiation (Skaug and Fournier, 2006), such as glmmTMB, which
also use the observed information matrix. The Laplace approximation with
expected information can be used as the objective function by adding "exp"
as a second specifier in method=c("ML", "exp") (or c("REML","exp")).

For GLMMs, extensions of the computational techniques for REML cor-
rections have long been considered (e.g., Breslow and Clayton, 1993). The
definition of restricted likelihood from conditional likelihood does not gen-
eralize easily, but the concept of REML estimation can also be extended (a
bit heuristically) as the maximization of joint log-likelihood penalized by the
log-determinant of the information matrix with respect to random effects and
fixed effects. REML, defined in this way (Lee et al., 2006, p. 187), has an
effect analogous to its effect in LMMs, where it typically reduces the nega-
tive bias of ML estimates of dispersion parameters. Note that this extended
definition still makes sense beyond GLM response families, i.e. beyond the
cases considered in the literature.

The objectives functions considered here are variously described as pe-
nalized joint likelihoods, or as adjusted profile h-likelihoods (APHLs). The
latter name has been retained in some of spaMM’s output as a generic name for
all variants of approximate marginal or restricted likelihood. The (expected-
Hessian) approximation for marginal likelihood is denoted *p,(h)* and the
REML objective function is denoted *pg,(h)*. The observed-Hessian equiv-
alents are denoted with a capital P: P,(h) and Ps,(h).

Various additional approximations have been considered. In penalized
quasi-likelihood (PQL; e.g., Breslow and Clayton, 1993 and references therein),
fixed effects are estimated by maximizing the joint likelihood rather that the
Laplace approximation for marginal likelihood. As originally defined, it uses
the extended restricted likelihood concept to estimate dispersion parame-
ters. spaMM can perform both such fits (“PQL”) and fits where dispersion
parameters are estimated by maximization of the Laplace approximation
for marginal likelihood rather than by REML (“PQL/L”). spaMM also imple-
ments some more cryptic methods discussed in the h-likelihood literature (see
help("method") for details). The PQL results are clearly distinct from what
MASS: : glmmPQL produces (see Section 5.1). Although PQL has been criti-
cized as an approximation of likelihood, it retains some interesting inferential
properties, and can be much faster than the full Laplace approximation.

20

3.5.2 Implications of REML for post-fit inferences

By default, fitme (and fitmv for multivariate-response models) will fit all pa-
rameters jointly by ML. This default can be reversed by using fitme (. ,method="REML").
Other fitting functions implemented in spaMM uses REML by default. This
reflects some established practice for LMMs (e.g., in 1me4: :1mer), and also
the fact that the other functions more closely follow by default the methods
of Lee and Nelder, who provided the above generalized definition of REML,
and generally emphasized REML adjustments (e.g., Lee and Nelder, 1996,
p. 633).

REML allow in principle more accurate estimation of the variance of ran-
dom effects and of the residual variance. It may be useful for estimating
other random-effect parameters. However, there are some drawbacks. For
example, REML fits are not suitable for inference about fixed effects. Confi-
dence intervals or likelihood ratio (LR) tests for fixed effects should be based
on fits without REML estimation. The function fixedLRT may be useful
to avoid errors here. It implements different procedures for inference about
fixed effects, compared by Rousset and Ferdy (2014). For example, one can
test for an effect of variable pred by using the fixedLRT function, whose
arguments are similar to those of fitme but which takes one formula for each
of the two models compared:

fixlrt <- fixedLRT(obs ~ 1 + Matern(l|x+y), obs ~ pred + Matern(l|x+y),
method="ML", data=dl, ranFix=list(nu=0.5))
summary (fixlrt,verbose=FALSE)

chi2_LR df p_value
1 41.69444 1 1.067119e-10

For tests of random effect parameters, LR tests based on restricted like-
lihood are in principle more accurate, but likelihood ratios from full ML fits,
possibly with some bootstrap correction, can also be performed. For comput-
ing LRTs for random effect parameters, no function equivalent to fixedLRT
is available,” so the tests must be performed by separately fitting the two
models compared. Alternatively, confidence intervals can be computed using
confint. CIs should always be considered as more informative summaries of
the statistical analysis than LRTs of single null parameter values.

5A general-purpose function would have to account for the impact of constraints on
parameter space on the distribution of the likelihood ratio, and for several other issues
related to the various ways of specifying random effects, not fully characterized by a design
matrix. By contrast, the space of linear regression coefficients is assumed unbounded, and
nestedness of fixed-effect models is easily checked by operations on their design matrices.

21

It is also known that prediction based on REML fits can be less accurate
that prediction based on ML fits (Harville, 1977). The estimation of spa-
tial correlation parameters is not necessarily better by REML (Zimmerman,
2010).

3.5.3 Inner iterations versus outer optimization

spaMM combines the following methods to fit parameters of a model: (1) a
(fairly standard) iteratively reweighted least squares (IRLS) algorithm to fit
fixed-effect coefficients (3) and random-effect values (u) given all correlation
parameters (for LMMs, this reduces to the direct solution of a linear system);
(2) an algorithm derived from the Levenberg-Marquardt one, to force conver-
gence when the IRLS algorithm diverges; (3) generic function-optimization
methods to fit correlation parameters such as the Matérn correlation pa-
rameters (generally using nloptr, but sometimes minga); (4) for estimating
dispersion parameters (As and ¢s), either the same optimization methods, or
iterative methods described in Lee et al. (2006). In the latter case, the joint
estimation of 3 and of dispersion parameters is iterative: given some values
at iteration ¢ of these parameters, the IRLS algorithm is used to obtain new
estimate of 3 and u given the dispersion parameters, then new estimates
of the dispersion parameters are obtained using the residuals of the current
IRLS fit. In spaMM, the latter method is here called “inner iterative” to con-
trast it with the generic “outer optimization” method. The summary of a fit
typically says which dispersion parameters were “outer-estimated”.

HLfit and HLCor only use the “inner” method while the other fitting func-
tions may select either approach for estimating dispersion parameters. Both
have virtues. The “inner” approach is always used to fit parameters of struc-
tured residual dispersion models. The inner approach may converge quickly
and avoid being trapped in local maxima. It may have some occasional draw-
backs when ¢ or A should be fitted to zero. More importantly, it requires the
computation of leverages, which is generally expensive, particularly for large
datasets. So, a function such as fitme tends to select the “inner” method
for small datasets and the “outer” one for large datasets (although the pre-
cise decision rule is based on additional criteria, as leverages are also often
needed for evaluating the gradient of the Laplace approximation). By using
the init or the init.HLfit arguments, one can control which method is
used by fitme for specific parameters (see help("inits")).

These distinctions are also apparent in fits of a conditional autoregressive
models, where the “inner” method may be used through HLCor (see examples
in Section 4.1.2). This method uses an eigen-decomposition of the adjacency
matrix, while the “outer” method can use a Cholesky factorization of the

22

precision matrix. For large adjacency matrices (say, roughly, of > 120 levels,
although the size of the data matters too), the latter approach can take
advantage of sparse Cholesky factorization to be faster. Consequently, the
“inner” method is faster for small problems but fitme can be much faster
otherwise.

There are also subtle differences in the REML fits achieved by fitme,
corrHLfit and HLCor, due to differences in the optimization approaches.
For example, corrHLfit will by default maximize with respect to correla-
tion parameters the restricted likelihood of joint ML/REML fits of fixed-
effect and dispersion parameters, while HLCor estimates all parameters by
alternating ML extimation of fixed effects for given random-effect parameter
estimates, and REML estimation of all random-effect parameters for given
fixed-effects estimates. The differences can generally be ignored, except for
detailed comparisons of algorithms and softwares (as could be illustrated
using the example of Section 4.1.2).

3.5.4 Numerical methods

spaMM uses different matrix computations for three cases defined mainly from
the structure of the correlation matrix of random effect and of its inverse,
the precision matrix. These three cases are essentially (1) geostatistical mod-
els, which have dense correlation and dense precision matrix, which is why
they are slow to fit; (2) conditional autoregressive or “Markov random field”
(MRF) models, which have sparse precision matrices, whose sparsity can
be exploited in fast algorithms. This has for example motivated the devel-
opment of MRF approximations of the Matérn correlation model (Lindgren
et al., 2011), further discussed in Section 5.2; (3) other non-spatial correlation
models, which typically have sparse correlation matrices. The how function
shows which method was selected for a fit. The default selection of method
should be appropriate in most cases, but help("algebra") describes how to
control it.

The correlation-based methods are based on a factorization of a weighted
“augmented” model matrix akin to the ones described by Bates and DebRoy
(2004) or Lee et al. (2006, p. 154). A QR factorization is used in spaMM except
in some cases related to non-GLM response families, where the Cholesky
factorization of the cross-product of the weighted augmented design matrix
is used. The sparse-precision methods are not based on a factorization of the
weighted augmented model matrix.

For LMMs with as single ¢ parameter, an “y-augmented” version of the
augmented model matrix is useful (Bates and DebRoy, 2004; Bates et al.,
2015). Adaptations of this concept to the three above types of correlation

23

structures are implemented for such LMMs in spaMM. The how function also
reports their use.

4 Further examples

4.1 Spatial GLMMs
4.1.1 Basic syntax

Non-Gaussian response data can be fitted by combining the features previ-
ously illustrated for LMMs together with syntax used in other procedures
such as glm or glmer. For example, a geostatistical model for binomial data
can be fitted by

data(Loaloa)

binfit <- fitme(
cbind (npos,ntot-npos) ~ 1 + Matern(l|longitude+latitude),
data=Loaloa, family=binomial())

using the two-column response format cbind (npos,ntot-npos) for bino-
mial data.

4.1.2 A classic example with autoregressive random effects

The following classical toy example (Clayton and Kaldor, 1987; Breslow and
Clayton, 1993; Lee and Lee, 2012) considers a Poisson-distributed GLMM
with a random effect following a conditional autoregressive (CAR) correlation
model. The data describe lip cancer incidence in different Scottish districts
(but we do not really care about the details). The model for the logarithm
of expectation of the response is

In(u;) = In(a;) + By + Pazi /10 + by, (4)

where In(a;) is an offset that describes the effect of population size and of
some other variables, not included in the statistical model, on the Poisson
mean; z; is the variable prop.ag below; and b; is a Gaussian random effect.

For the b;s, the CAR model considers a covariance matrix of the form
AI — pN)~! where N is an adjacency matrix between the different districts
(a matrix with elements 1 if the districts are adjacent and 0 otherwise), here
provided as NMatrix included in data(scotlip). The rows of the matrix cor-
respond to the gridcode variable in the data. A full fit including estimation
of A and p is then given by

24

data(scotlip)
lipfit <- HLCor(

cases ~ I(prop.ag/10) + adjacency(l|lgridcode) + offset(log(expec)),
data=scotlip, family=poisson(), adjMatrix=Nmatrix)

We here use the HLCor function as it implements the same fitting strategy

as that presumably used by Lee and Lee (2012), and the results are indeed
very close to theirs:

summary (1ipfit)

#i#
##
#i#t
##
#it
##
##
##
##
#i#
##
#i#
##
#i#t
##
#it
##
##
##
##
##
##
##
##
#i#t

formula: cases ~ I(prop.ag/10) + adjacency(l | gridcode) + offset(log(expec))
Estimation of lambda by REML (p_bv approximation of restricted logL).
Estimation of fixed effects by ML (p_v approximation of logL).
family: poisson(link = log)

———————————— Fixed effects (beta) —---—-—----—-—-

Estimate Cond. SE t-value

(Intercept) 0.2377 0.2078 1.144

I(prop.ag/10) 0.3763 0.1218 3.090

——————————————— Random effects ——————------—-

Family: gaussian(link = identity)
-—— Correlation parameters:
1.rho
0.1740116
--- Variance parameters ('lambda'):

Estimate of rho (gridcode CAR): 0.174

Estimate of lambda factor (gridcode CAR): 0.1548
—--- Coefficients for inverse[lambda_i =var(V'u)]:
Group Term Estimate Cond.SE
gridcode (Intercept) 6.46 1.716
gridcode adjd -1.124 0.301
of obs: 56; # of groups: gridcode, 56
————————————— Likelihood values -—-—----——---—-
logLik
logL (p_v(h)): -161.5141
Re.loglL (p_b,v(h)): -163.6783

But this can also be fitted by fitme:5

6

or by corrHLfit, with four-decimal differences in returned values due to differences

in the strategies used to jointly maximize marginal and restricted likelihood (see Sec-
tion 3.5.3).

25

data(scotlip)

lipfit <- fitme(
cases ~ I(prop.ag/10) + adjacency(l|lgridcode) + offset(log(expec)),
data=scotlip, family=poisson(), adjMatrix=Nmatrix, method="REML")

HLCor will be faster for small data but fitme will otherwise be more
efficient. See the ohio.pdf file on the public repository for spaMM for an
example based on a comparison with the hglm package.

4.2 Beta random effects and binomial logit-Beta model

spaMM can now fit Beta-binomial models, using family=betabin. Alterna-
tively, it can fit models with Beta-distributed random effects, which may also
lead to a Beta-binomial model, but leads to a class of models that appears
to often depart from the Beta-binomial models, as shown below. This class
is here called the binomial logit-Beta model (per semantic considerations de-
veloped in a following long footnote), rather than beta-binomial HGLM as it
is sometimes named. For concreteness, we assume that the response follows
a binomial distribution with expectation p given conditionally on a realized
random effect v

=x0+zv (5)

logit(p) = In . b

(assuming the default logit link of the binomial GLM family); and we also
assume that
(6)

where the elements of u are independent Beta-distributed, and where the logit
is also the default link for Beta-distributed random effects. Thus, if there are
no fixed effects, the linear predictor gives p = wu, again Beta-distributed.
However, when a fixed effect a is included, p = e®u/[1 + (¢ — 1)u] no longer
has a Beta distribution. This contrasts with Beta-binomial models where p is
always Beta distributed, and where it is the (logit of the) expectation of the
Beta variable which is controlled by a linear predictor (e.g., Agresti, 2013).

Since v is not gaussian, this is not a GLMM, but what Lee and Nelder
(1996) called a hierarchical GLM (HGLM). It can be applied to a toy data
set for Beta-binomial fits, of seed germination data. For comparison with
the results of Lee and Nelder (1996), we can fit the model to these data by
the method HL(0,0) (slightly cryptic at this step of the documentation), but
otherwise the default method should be used.

u

= logit(u) =1
v = logit(u) n—

26

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref

data(seeds)
HLfit (cbind(r,n-r) “seed*extract+(1l|plate),family=binomial(),

##
##
#i#t
##
#i#t
##
#i#
##
##
##
##
#i#
##
#i#
##
#i#t
##
##
##
##
##
##
##
##

rand.family=Beta() ,method="HL(0,0)",data=seeds)

formula: cbind(r, n - r) ~ seed * extract + (1 | plate)
Estimation of lambda by REML (p_bv approximation of restricted logL).
Estimation of fixed effects by h-likelihood approximation.
family: binomial(link = logit)
———————————— Fixed effects (beta) ---——---—-—--—-

Estimate Cond. SE t-value
(Intercept) -0.54259 0.1864 -2.9102
seed073 0.08003 0.3027 0.2644
extractCucumber 1.33682 0.2643 5.0579
seed073:extractCucumber -0.82202 0.4218 -1.9487

——————————————— Random effects -———-—-----—--—-
Family: Beta(link = logit)
--- Variance parameters ('lambda'):
lambda = 4 var(u)/(1 - 4 var(u)) for u ~ Betal[1/(2*lambda),1/(2*%lambda)];

plate : 0.02239
--- Coefficients for log(lambda):
Group Term Estimate Cond.SE

plate (Intercept) -3.799 0.5381
of obs: 21; # of groups: plate, 21

————————————— Likelihood values ---—-——-—-—-—-—--
logLik
h-likelihood: -42.16234
logL (p_v(h)): -54.00644
Re.logl (p_b,v(h)): -56.60452

The fixed effects estimates are consistent with those of Lee and Nelder

(1996). The present parametrization of the Beta distribution is that of Lee
and Nelder (2001) as discussed by Lee et al. (2006, p. 181), so that HLfit’s
Ais 1/(2a) for o as shown in Lee and Nelder (1996). The A and « estimates
are then seen to be approximately equivalent. Lee and Nelder (1996) also
present a GLMM fit of these data, which is also similarly consistent with the
GLMM fit by HLfit (not shown).

4.2.1 Gamma GLMM, HGLM, and joint GLMs

This example, derived from Lee et al. (2011), illustrates a Gamma GLMM
model with a log link, that is n = In(u) = X3 + Zv where v is normally

27

distributed.” A notable feature is that it includes a non-trivial model for the
variance of residual error, described by a linear predictor for the logarithm
of this variance. There are only batch random effects (whose specification
determine the elements of Z), without any autocorrelated process, so the
HLfit function is sufficient to analyze these data.

This example deals with data about semiconductor materials (“wafers”)
from Robinson et al. Subject-matter details are ignored here; three variables
denoted X1, X2 and X3 were experimentally varied. A fixed-effect model
for the residual variance (“structured dispersion model”) was also considered.
This model can be fitted by

data(wafers)
HLg <- HLfit(y = X1+X2+X3+X1*X3+X2*X3+I(X2"2)+(1|batch),
family=Gamma(log),
resid.model = ~ X3+I(X3"2) ,data=wafers)
summary (HLg)

formula: y ~ X1 + X2 + X3 + X1 * X3 + X2 * X3 + I(X2°2) + (1 | batch)

Estimation of lambda and phi by REML (P_bv approximation of restricted logL).
Estimation of fixed effects by ML (P_v approximation of logL).

family: Gamma(link = log)

- Fixed effects (beta) --————-—----
Estimate Cond. SE t-value
(Intercept) 5.55720 0.05454 101.893
X1 0.08376 0.02457 3.410
X2 -0.20862 0.02400 -8.692
X3 -0.13729 0.03745 -3.666

" They call the Gamma GLMM with log link the Gamma-lognormal model. They
appear to view this model as Gaussian v = In(u) for u being lognormal, and to use the
distribution of u as a basis for the name of the model (thus the “log” here comes from
the u — v link, not from the response link p — 7). This terminology is ambiguous if the
u — v link and the u distribution are not both specified, as highlighted from the fact that
the same distributions can be obtained with identity w + v link if v has normal rather
than lognormal distribution, in which case the name would be “Gamma-Normal” model.

This suggests that the semantics for HGLMs should be revised, and for example be based
on the distribution of v so that different names for the same distribution cannot result
from different specifications of u. In principle the link for the response should be specified
although it is usually ignored when it is the canonical link of the GLM (which is not the
case for the Gamma examples). According to this logic the Gamma-inverse Gamma model
becomes the Gamma-log inverse Gamma (GLInG?) HGLM with log link, the not-quite
Beta-binomial model (with canonical link for response) becomes the Binomial logit-Beta
(BLoB?), and the usual Binomial GLMM becomes the Binomial logit-normal model (as
in Coull and Agresti, 2000). A BLInG HGLM may not look like serious stuff, but it can
be fitted...

28

I(X272) -0.07641 0.02038 -3.749

X1:X3 -0.09181 0.03971 -2.312

X2:X3 -0.08686 0.03969 -2.188

#H# Random effects -------------—-
Family: gaussian(link = identity)

--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;

#it batch : 0.02501

#i# —--- Coefficients for log(lambda):
Group Term Estimate Cond.SE

Dbatch (Intercept) -3.688 0.4891
of obs: 198; # of groups: batch, 11

--- Residual variation (var = phi * mu"2) --
Coefficients for log(phi) ~ X3 + I(X372)

Estimate Cond. SE

(Intercept) -2.8954 0.1384

X3 0.1103 0.1142

I(X372) 0.9464 0.1134

#H# = Likelihood values -----——————--
logLik

logL (P_v(h)): -1157.607

Re.logl (P_b,v(h)): -1175.199

A gamma-inverse Gamma model was also considered by Lee et al. (2011).
Here the log of the expectation of the Gamma response has the form n =
In(p) = XB+ v = X3+ In(u) where u has an inverse-Gamma distribution.
v being non-Gaussian, this is an HGLM.

HLfit(y "X1+X2+X1#X3+X2*X3+I(X2"2)+(1|batch),
family=Gamma(log) ,rand.family=inverse.Gamma(log) ,
resid.model= ~ X3+I(X3"2) ,data=wafers)

formula: y ~ X1 + X2 + X1 * X3 + X2 * X3 + I(X2°2) + (1 | batch)

Estimation of lambda and phi by REML (P_bv approximation of restricted logL).
Estimation of fixed effects by ML (P_v approximation of logL).

family: Gamma(link = log)

#it ———————————— Fixed effects (beta) ---———————---
Estimate Cond. SE t-value
(Intercept) 5.57053 0.05416 102.849
X1 0.08373 0.02455 3.411
X2 -0.20860 0.02399 -8.697
##t X3 -0.13734 0.03744 -3.668
I(X272) -0.07637 0.02037 -3.750

29

#i#t
##
#it
##
##
##
##
##
##
##
##
#i#t
##
#it
##
##
##
##
##
##
##

X1:X3 -0.09194 0.03970 -2.316
X2:X3 -0.08682 0.03968 -2.188
——————————————— Random effects ---———------——-
Family: inverse.Gamma(link = log)
--- Variance parameters ('lambda'):
lambda = var(u)/(1 + var(u)) for u ~ inverse-Gamma(sh=1+1/lambda, rate=1/lambda);
batch : 0.02507
--- Coefficients for log(lambda) :
Group Term Estimate Cond.SE
batch (Intercept) -3.686 0.4866
of obs: 198; # of groups: batch, 11
--- Residual variation (var = phi * mu"2) --

Coefficients for log(phi) ~ X3 + I(X372)
Estimate Cond. SE
(Intercept) -2.8967 0.1384
X3 0.1093 0.1141
I(X372) 0.9476 0.1134

————————————— Likelihood values --—-——-——————--

logLik
logL (P_v(h)): -1157.525
Re.logl (P_b,v(h)): -1175.127

Lee et al. (2011) also fit GLMs, and GLMs with structured dispersion

models (known as joint GLMs), to these data. These models can all be fit
by HLfit. A joint GLM in particular is fit by

HLEit(y ~X1+X2+X1#X3+X2%X3+I(X2°2),family=Gamma(log),

#i#t
##
##
##
##
##
##
##
##
#i#t
##
#it
##
##

resid.model= ~ X3+I(X3"2) ,data=wafers)

formula: y ~ X1 + X2 + X1 x X3 + X2 * X3 + I(X2°2)
Estimation of phi by REML (p_bv approximation of restricted logL).
Estimation of fixed effects by ML.

family: Gamma(link = log)
———————————— Fixed effects (beta) ————————--—-
Estimate Cond. SE t-value
(Intercept) 5.57570 0.03131 178.077
X1 0.08375 0.02795 2.996
X2 -0.21036 0.02795 -7.526
X3 -0.13261 0.04019 -3.299
I(X272) -0.08017 0.02440 -3.286
X1:X3 -0.09247 0.04383 -2.110
X2:X3 -0.08201 0.04383 -1.871
--- Residual variation (var = phi * mu™2) --

30

Coefficients for log(phi) ~ X3 + I(X372)

Estimate Cond. SE

(Intercept) -2.5119 0.1340

X3 0.1588 0.1136

I1(X372) 0.7365 0.1125

T I s Likelihood values ----—-—-—-—-—-
loglik

logL : -1170.187

log restricted-lik : -1187.805

All these fits are by default REML fits: the argument method="ML" must
again be used to perform ML fits. Results from these different fits of the
same data are similar to published ones. These examples are continued in
section 5.3.1 where we make sure that the small discrepancies with such
estimates are not due to imprecisions of spaMM.

4.3 Random-slope model

A commonly considered random-slope model is a model with the following
structure:

1 = 151 + by + x5(Bs + bg). (7)

The distinctive term is here xgbg as the remainder is of the same form already
considered e.g. in eq 4. The additional term means that the “slope” of the
regression (the coefficient of the design variable xg) is random, including the
random effect bs. Hence, there are two realized random effects by, and bg 4
for each level g of the grouping factor. Random-slope models allow each such
pair to be correlated, which is the main specificity in fitting these models. In
this case the parameters of the random-slope term are thus described by a
2 x 2 correlation matrix.

The syntax for random-slope terms is ~ (<LHS>|<grouping factor>),
where the left-hand-side <LHS> gives the explanatory variable xg, as in
HLfit(y ~X1+(X2|batch),data=wafers). If you want to ignore the corre-
lation (which is often warned against), use two explicit terms as in
(1|batch)+(X2-1|batch) or the shortcut (X2| |batch); if you further want
a random effect on the slope only, consider only the term (X2-1|batch) or
(0+X2|batch); in all of these cases the syntax is the same as for a fit by 1lmer
and is consistent with standard syntax for formulas.

Other possible forms of <LHS> (not all actually implying random-coefficient
models) are detailed in help("spaMM"). They include the case where <LHS>
is a factor variable, in which case for each level of the grouping factor, there
are as many realized random effects as levels of the <LHS>. Thus, if the <LHS>

31

factor has three levels, a 3 x 3 correlation matrix describes parameters of the
random-coefficient term.

The output from such models requires careful consideration. Suppose we
fit

fitme(y ~X1+(X2|batch),data=wafers,method="REML")

formula: y ~ X1 + (X2 | batch)

REML: Estimation of ranCoefs and phi by REML.

Estimation of fixed effects by ML.

Estimation of phi by 'outer' REML, maximizing restricted logL.
family: gaussian(link = identity)

I e Fixed effects (beta) —---———---—-—-
#i#t Estimate Cond. SE t-value

(Intercept) 224.91 12.316 18.262

X1 23.68 9.325 2.539

- Random effects ---———--——---—-
Family: gaussian(link = identity)

--— Random-coefficients Cov matrices:
Group Term Var. Corr.

batch (Intercept) 2760

Dbatch X2 1844 =il

of obs: 198; # of groups: batch, 11

#H# - Residual variance -----—-———---
phi estimate was 13064

-— Likelihood values -———————————-
#i#t loglik

logL (p_v(h)): -1228.721

Re.logl (p_b,v(h)): -1222.139

or HLfit(y “X1+(X2/batch),data=wafers), but HLfit is much
less efficient at fitting random-coefficient terms.

As in spatial models, correlated Gaussian random effects are represented
as b = Lv where the elements of v are uncorrelated. The Var. column gives
the variances of the correlated effects, b = Lv, which are also the random ef-
fects whose variance and standard deviation are reported by 1mer’s Variance
and Std.Dev.. The correlation coefficient for the “intercept” and “slope” ef-
fects is the Corr on the right of the random effect output (here as single
-1 value; more generally a lower triangular block when more than two ran-
dom effects are possibly correlated. By default, information about v is not
reported. It may be displayed by summary(.,details=TRUE).®

8Tt is unclear how far such output would be useful because there is no unique repre-

32

4.4 Multivariate response

Multivariate-response models appear when different response variables de-
pend on shared parameters, or on correlated random effects. A typical exam-
ple is a quantitative-genetics model where different phenotypes are affected
by an individual’s unobserved genotype. In some cases (requiring the same
response family for all variables), these models can be fitted by previously
described procedures, but when this is not feasible or convenient, the fitmv
function should be used. It can fit models where the responses variables are
affected by random effects identical or correlated across the variables. The
case where variables are affected by the same fixed effect (i.e., by the same
B coefficient for a given predictor variable) is not yet considered.

The fitmv function handles identical random effects over responses (say a
shared Matern term), as well as random effects correlated across the response
variables, specified by terms of the form (mv(...)|<RHS>)). The mv(...)
specifier operates exactly as a factor, hence this term is a random-coefficient
term as discussed in the previous section, but its levels refer to “levels” of
the multivariate response (i.e., the different phenotypes, in the quantitative-
genetics context), rather than to a factor variable in the data. This syntax
has been extended in version 3.9.0 so that one can specify composite random
effects that combines features of a corrMatrix() random effect and of the
mv () specifier.

To further show the usage and relevance of these specifiers, we will recon-
sider an example previously taken by Wilson et al. (2010) to illustrate the use
of different softwares in quantitative genetics. The next section will show how
multivariate modelling can be used for hurdle models of species distribution
(with additional discussion of prediction, simulation and bootstrap proce-
dures for these models); and Appendix B provides further examples based
on so-called “aster models” (Geyer et al., 2007). In their original form, the
latter models have no shared random effects among response variables and
can even be fitted by several calls to the stats: :glm function. Nevertheless,

sentation of b as Lv. In the present case, the covariance matrix of b can be represented
in terms of its eigensystem, as Cy, = LAL’ where L contains normed eigenvectors and A
is the diagonal matrix of eigenvalues. Thus b = Lv where the variances of v are these
eigenvalues. Assigning these uncorrelated random effects to the intercept and the slope is
a conceptually strained exercise: any given ordering of the eigenvectors in L and for any
permutation matrix P, Lv can be written as (LP)(PTv) in terms of the permuted design
matrix LP and permuted independent random effects PTv, so that each P provides a
statistically equivalent fit but a different assignment of v elements to intercept and slope.
However, spaMM chooses a permutation so as to maintain consistency between the output
of models with and without correlation when the correlation vanishes, and to maintain
consistency among the different descriptors of variance on each row in the same condition.

33

the response families may differ among variables, and fitmv is suitable to fit
aster models or their mixed-model extensions.

Wilson et al. (2010) considered the joint modelling of birth weight (BWT)
and tarsus length (TARSUS) in a simulated data set from a mythical Gryphon
population. The quantitative genetic model assumes that genes which affect
these traits have effects that are correlated among individuals according to
a relatedness matrix, specified as a corrMatrix in spaMM. The multivariate
model further assumes that genetic and environmental effects are correlated
over traits within individuals.

A random effect (0+mv(1,2)|ID) can be used to represent correlated en-
vironmental effects. The mv(...) levels are the first response, birth weight,
versus the second, tarsus length. The (0+...) syntax avoids contrasts be-
ing used in the incidence matrix of the random effects (consistently with the
general syntax for factors in R), as it would not make much sense to represent
TARSUS as a contrast to BWT. Another random effect corrMatrix (0+mv(1,2) | ID)
can be used to represent genetic effects correlated over traits and individu-
als, with the appropriate correlation model for the multivariate quantitative
genetic model (as detailed in help (" composite-ranef"), the correlation ma-
trix of such composite random effects can be written as the Kronecker product
of the random-coefficient correlation matrix among levels of the factor by the
correlation matrix specified by corrMatrix).

The fitmv function has a submodels argument which should be used to
specify model formulas for each response. The function call

data("Gryphon")
gry_GE <- fitmv(
submodels=1ist(
BWT ~ 1 + corrMatrix(0+mv(1,2)|ID) + (O+mv(1,2)|ID),
TARSUS ~ 1 + corrMatrix(0+mv(1,2)|ID) + (O+mv(1,2)|ID)
)5
fixed=1ist (phi=c(le-6,1e-6)),
corrMatrix = as_precision(Gryphon_A),
data = Gryphon_df, method = "REML")

Note: Preciston matriz has 455 more levels than there are in the
data.

then fits the model. This results are practically identical to those ob-
tained by the ASreml software (help("Gryphon") gives more details about
this comparison).

fitmv() detects random effects terms shared accross different submodel
formulas, so it detects that the same term corrMatrix(0+mv(1,2)|ID) af-

34

fects both responses, and likewise for (0+mv(1,2) | ID) (in this case this infor-
mation is redundant with that given by the mv() specifier, but other types
of shared random effects are detected in the same way: see Appendix B
for examples). In the Gryphon_df data, measurements are not repeated
within individuals, so the (0+mv(1,2)|ID) term also absorbs all residual
variation. The residual variances must then be fixed to some negligible val-
ues (as shown) in order to avoid non-identifiability. The relatedness matrix
Gryphon_A is here specified through an object that contains its inverse, using
as_precision(). This is not required, but using it implies that spaMM does
not have to find out and inform the user that using algorithms based on the
inverse is better (as is typically the case for relatedness matrices).

4.5 Zero-altered (hurdle) models

Zero-altered, or hurdle, models combine a binomial model for non-zero versus
zero response models, and a zero-truncated model for non-zero response. This
is often contrasted to zero-inflated models, where the zeroes in the data are
interpreted as a mixture of two events, such as a zero in a binomial response
model plus a zero in a non-truncated Poisson response given the binomial
response was non-zero. Zero-altered models can describe excesses or deficits
of zeroes while zero-inflated models only describe excesses of zeroes. spaMM
can fit the zero-altered models, but not the more constrained zero-inflated
models (except by considering some quite inelegant use of offsets).

There is no specific syntax for hurdle models in spaMM. They can be
fitted as two separate models for zero and non-zero response, or as a single
multivariate-response model. Among other features, the multivariate-reponse
fit can handle shared or correlated random effect among the two component
models.

When conducting a parametric bootstrap inference, special care is needed
in controlling the output of simulations from the two fitted submodels so that
the simulations are appropriate for the question at hand.

To illustrate these features, we use abundance data for the common red-
start (Ph. phoenicurus) in Switzerland. The data are part of a multispecies
dataset discussed in several works on species distribution modeling, provided
in the AHMbook package and reformatted in the jSDM package. We first define
an ad-hoc data frame with both the counts count and the zero-truncated
counts Tobs:

data("birds", package="jSDM")

redstart <- data.frame(
x=birds$coordx/1000, y=birds$coordy/1000,

35

count=birds$ Phoenicurus phoenicurus-,
forest=birds$forest, elev=birds$elev, rlength=birds$rlength)

redstart$pres <- redstart$count>0

Tobs <- redstart$count
Tobs [Tobs==0L] <- NA
redstart$Tobs <- Tobs

4.5.1 Fitting

It is then possible to fit the (spatial) hurdle model as two separate models:

pres <- fitme(pres ~“forest+elev+rlength + Matern(l|x+y),
data=redstart, family=binomial())

Fits using Laplace approzimation may diverge for (nearly) all-
or—-none binomial data:
check PQUL or PQL/L methods in that case.

Tabund <- fitme(Tobs ~“forest+elev+rlength + Matern(1|x+y),
data=redstart, family=Tpoisson())

The presence-absence model will typically be slower to fit that the zero-
truncated Poisson one, due both to the typically much larger dataset and the
fact that binary GLMMs are typically hard to fit.

The same models can also be jointly fit as a mutivariate-response model
using fitmv:

hurdle <- fitmv(
submodels=1ist (
list(pres “forest+elev+rlength + Matern(l|x+y), family=binomial()),
list(Tobs “forest+elev+rlength + Matern(+1|x+y), family=Tpoisson())),
data=redstart)

which is slower, as the fact that two independent model are being fit is
being exploited by the fitting procedure. Note that the models are indepen-
dent because (as explained in the previous section of multivariate-response
models) the two Matern terms are recognized as distinct thanks to a little
trick: one is declared as Matern(1|x+y) and the other as Matern(+1|x+y),
with the additional “+”.

36

Either way, it can be observed that the inferred spatial random effects
are correlated among the two submodels:

Lv <- ranef (hurdle)
cov2cor (cov(cbind (Lv[[1]] [names(Lv[[2]11)], Lv[[2]11)))

[,1] [,2]
[1,] 1.0000000 0.9191193
[2,] 0.9191193 1.0000000

(where Lv[[1]], the predictions for the random effect in the presence-
absence model, is subsetted to positions names(Lv[[2]]) where the other
random effect has been predicted, using names determined by spatial loca-
tions). This observation may prompt us to fit as truely multivariate model
with correlated random effects accross the two submodels. Before perform-
ing this fit, we define a zero-truncation function whose immediate use in the
model formula will be helpful in a later step:

ZT <- function(count, pres) {count[pres==0L] <- NA; count}

cor_hurdle <- fitmv(
submodels=1ist(
list(pres ~“forest+elev+rlength + Matern(0+mv(1,2) |x+y), fam-
ily=binomial()),
1list(ZT(count,pres) ~“forest+elev+rlength + Matern(0+mv(1,2) |x+y),
family=Tpoisson())),
data=redstart)

Despite the additional cross-submodel correlation parameter this model
has one fewer parameter than the previous one, as the same spatial correlation
parameters are fitted for both responses. Despite this, it has a substantially
better likelihood. The cross-correlation parameter is 1, at the boundary
of parameter space, which suggests that an even better correlation model
could be found, but otherwise confirms the preliminary observation, from
the independent submodels, that the random effects were correlated. These
fits also confirm the presence of spatial effects on redstart abundance (Guélat
and Kéry, 2018).

4.5.2 Point-prediction intervals

Predictions from the fitted model by default use the fitted values stored in
the fit object, which are dimensioned as the sum of number of observations

37

for each submodel. The same then holds for simulations. The length of
simulate(cor_hurdle) is 266461, because the dataset has 266 lines (for
266 locations), only 61 of which exhibit non-zero counts. By contrast, the
length of simulate(cor_hurdle, newdata=cor_hurdle$data) (or of
simulate(., newdata=redstart)) is 2*266, because predictions from the
truncated Poisson model are then returned for locations where redstarts were
not observed in the original data.

A third type of prediction/simulation may be needed in a bootstrap sim-
ulation aimed at taking into account all uncertainties in inference, as follows:
(1) the binary model is simulated; (2) the truncated Poisson model is sim-
ulated for the locations simulated as occupied, that is generally neither the
originally occupied locations nor all locations; (3) the model is refitted on
these new data. Such simulations can be performed through a bit of pro-
gramming.

Here, we illustrate another trick that may be useful to minimize such pro-
gramming when a truely multivariate-response model is refitted: we have de-
fined above the ZT function to allow the response of the zero-truncated model
to be updated using new values of the pres and count variables, and we fur-
ther need to specify that the count variable needs to be updated, because
spaMM is unable to deduce this fact from the expression ZT (count,pres) for
the response. We do this below by specifying cor_hurdle$respNames <-
c("pres","count") (a message will direct you to the appropriate documen-
tation if you forget to do so).

Further details of the bootstrap computation depend on what exactly
we want to do. In particular, if we want to obtain intervals for expected
numbers of observations (given the same observation effort) in the next year,
and are willing to assume that the same values of latent factors (represented
by the random effects) will be operating as in generating the data, then the
new simulations should be conditional on the predicted values of the random
effects (type="residual" in the following call).

newredstarts <-
simulated4boot (cor_hurdle, newdata=redstart, type="residual",
nsim=199L) $bootreps

cor_hurdle$respNames <- c("pres","count")

simfun <- function(y, verbose=FALSE) {
refit <- update_resp(cor_hurdle, newresp=y, verbose=verbose)
repred <- predict(refit, newdata=refit$data) [,1]

38

again, using 'mewdata' to get predictions for all locations.
return(repred[1:266]*repred[267:532])
b

max_nb_cores <- parallel::detectCores(logical = FALSE) - 1L
library("doSNOW")
repreds <- spaMM_boot (
boot_samples=newredstarts, nb_cores=max_nb_cores,
simuland= simfun, fit_env= list(cor_hurdle=cor_hurdle, ZT=ZT),
control.foreach=1ist(.errorhandling="stop"), type ="residual")$bootreps

t0 <- predict(cor_hurdle, newdata=redstart)[,1]
t0 <- t0[1:266]*t0[267:532]

boot_interval <- function(idx) {
boot: :boot.ci(boot.out = list(t=repreds[,idx,drop=FALSE], t0=tO[idx],
R=nrow(repreds), sim="parametric"), type=c("perc"))$percent[4:5]

¥

CIs <- sapply(seq(ncol(repreds)), boot_interval)

After a rather long computation, the intervals for the successive locations
in the data are (with point predictions as red dots):

39

Predicted redstart counts

Intervals

100 200
Location id

o-

5 Comparison with alternative software and liter-
ature results

This section brings two main types of informations: insights into the origin of
often subtle differences between fit results by different procedures (up to the
point of arguing about inconsistencies of summaries of stats: : glm fits), and
objective assessments of occasional claims about the relative speed of spaMM
compared to INLA. Previous versions of this document presented a similar
comparison with hglm for conditional autoregressive models, but this has
been moved to another document (see further reference in Section 4.1.2). All

40

examples were computed with R Under development (unstable) (2023-08-21
84998 ucrt), spaMM 4.4.0, and the given versions of the other packages.

5.1 Procedures for geostatistical models (or contrived to such
usage): MASS: :glmmPQL, lmer, geoRglm, glmmTMB

Some tricks commonly used (at least when spaMM was first conceived) to con-
strain the functions 1mer, and glmmPQL (from MASS), to analyse geostatistical
models are discussed in Rousset and Ferdy (2014) (in particular, in Appendix
G, independently available here). In summary, they should be avoided. As
further pointed below, glmmPQL does not really implement PQL, which is
confusing.

Some packages based on stochastic algorithms (typically, MCMC) can
fit spatial models, and can give reasonable results, but MCMC methods are
typically difficult to assess, particularly in the absence of automated proce-
dures for choosing Markov chain parameters. The same can be said about
prior-laden approaches. Such software may also not provide procedures for
LRTs of fixed effects.

One such package was geoRglm (now archived from CRAN). spaMM in-
cludes the Loaloa dataset, used by Diggle and Ribeiro (2007) and Diggle
et al. (2007) in an application of methods implemented in geoRglm. The
following call

fitme(cbind(npos,ntot-npos) ~ elevl + elev2 + elev3 + elevd +
maxNDVI1 + seNDVI + Matern(l|longitude+latitude),
data=Loaloa, family=binomial())

and additional examples in help("Loaloa") show how to obtain with
spaMM results similar to previously published ones.

glmmTMB can fit the same spatial model, with equivalent results (spaMM
is about 6.8 times faster than version 1.1.5, which means little except if you
expected the opposite). Further comparisons of fitting times (and actual
fitting success) were given by Rousset and Courtiol (2021) but are not up-
to-date.

5.2 Interpolated Markov random fields via spaMM and INLA

For this comparison, and drawing on the Loaloa example above, we first de-
fine a loa_spde object that defines a particular Markov random field (MRF)
structure for the random effects, which is designed to mimic a Matérn model
with given smoothness, but to be faster to fit (Lindgren et al., 2011), because

41

http://kimura.univ-montp2.fr/~rousset/spaMM/RoussetF14AppendixG.pdf

it is designed to allow fast fitting by algorithms exploiting the sparseness of
the precision matrix of the random effects. As spaMM also implements sparse-
precision methods, it can also take advantage of this.

Based on this computational advantage many publications assume that
fits of MRF models are automatically faster than those of Matérn mod-
els, but I could not find suitable comparisons, and the following ones show
limits of this idea. The problem highlighted by true comparisons is that
designing the MRF model involves the definition of a lattice which may in-
volve more vertices than the number of locations in the original data, and
that fitting an MRF model with many vertices is also slow. The number
of vertices in the lattice can be reduced by using the cutoff argument of
INLA: :inla.mesh.2d (), but this may strongly affect the likelihood of the
resulting fitted model, so this is not innocuous. Indeed, if the cutoff is high
enough, some data points may be de facto excluded from the lattice, an event
that seems to be largely ignored, but whose occurrence is reported by spaMM.

The loa_spde objet describing the structure of the random effects is
produced using functions from INLA:

spLoaloa <- sp::SpatialPointsDataFrame(
coords = Loaloal[, c("longitude", "latitude")],
data = Loaloa)
spde_mesh <- INLA::inla.mesh.2d(
loc = INLA::inla.mesh.map(sp::coordinates(spLoaloa)),
max.edge = c(3, 20))
loa_spde <- INLA::inla.spde2.matern(spde_mesh)

The random effect is then fitted by spaMM, using the syntax IMRF(. .., model=loa_spde).
INLA is not required in this computation:

fitme(cbind(npos,ntot-npos)~
elevli+elev2+elev3+elev4+maxNDVI1+seNDVI
+ IMRF(1|longitude+latitude, model=loa_spde),
family=binomial(), data=Loaloa)

The same random effect can be fitted by INLA, as follows:
fit_INLA <- inlabru::bru(
components = npos ~ field(map = coordinates, model = loa_spde) +

elevli+elev2+elev3+elev4+maxNDVI1+seNDVI,
data = splLoaloa, family = "binomial", Ntrials=spLoaloa$ntot)

42

Computation times by INLA and spaMM are similar. This observation can
be repeated on other examples (Rousset and Courtiol, 2021), even suggesting
that spaMM is faster for large data sets.

The results of the lattice model by spaMM are indeed close to those of
fitting the Matern model with smoothness fixed to 1, i.e.

fitme(cbind(npos,ntot-npos)~
elevlit+elev2+elev3+elev4+maxNDVI1+seNDVI+Matern(1l|longitude+latitude),
fixed=1list (corrPars=1ist("1"=1list(nu=1))),

family=binomial (), data=Loaloa)

Comparison with the unconstrained Matérn model suggests that the lat-
ter is distinctly better at fitting these data, and fitting this unconstrained
model is also faster than fitting the lattice model by either software. Similar
observations can be repeated on other datasets involving similar numbers of
spatial locations.” In such cases, there is little motivation to use the lat-
tice model defined by INLA::inla.spde2.matern, unless a cutoff is used
to reduce the number of vertices in the lattice. Ultimately, such reduction
(or a similar interpolation approach with a Matern random effect, not yet
implemented) may be the only feasible one for large data sets. For datasets
with thousands of positions, all methods will become very slow (again, unless
a cutoff is used). A benefit of the lattice model that may matter in such
cases is that it also requires less computer memory than the Matérn model.

5.3 Gamma GLMM with non-canonical link

We reconsider the previously introduced non-spatial Gamma GLMM, and
some variations of it. The log link used here is standard, but non-canonical,
and softwares may differ in the way this case is handled. The HLfit function
(which performs REML fits by default) is used in this Section but identical
results could be obtained using fitme.

HGLMMM (Molas and Lesaffre, 2011) was previously considered in early ver-
sions of this documentation, but has been “removed from the CRAN reposi-
tory” on 21/12/2013 (it is still available from the “archive”). In the example
developed below, it gave exactly the same point estimates and likelihoods as
the HLfit fit shown p. 28.

9Since this documentation was first written, the “unconstrained” IMRF model (de-
clared as a MaternIMRFa random effect) has been introduced in spaMM and allows a better
comparison with the unconstrained Matérn model.

43

5.3.1 A comparison with published estimates

The non-spatial Gamma GLMM fit considered here was considered by Lee
et al. (2011), and the following analysis suggests that spaMM (and HGLMMM) are
more accurate than the software used in that study (presumably Genstat).
The likelihood values they give for this model are slightly higher than the
HLfit ones but even higher than those that can be recomputed by HLfit for
the estimates reported in the paper, which are given by!'°

phiGiven <- with(wafers,
exp(as.matrix(cbind(1,X3,X372)) %*% matrix(c(-2.90,0.10,0.95))))
etaGiven <- with(wafers,
5.55+0.08%X1-0.21*%X2-0.14%X3-0.08%X2"2-0.09*X1%X3-0.09*X2*X3)
wafers <- cbind(wafers,etaGiven=etaGiven)
HLfit(y ~“(llbatch) + O + offset(etaGiven),
family=Gamma(log) ,data=wafers,
REMLformula=y ~X1*X3+X2%X3+I(X2°2)+(1|batch),
ranFix=1ist(lambda=exp(-3.67) ,phi=phiGiven))

formula: y ~ (1 | batch) + 0 + offset(etaGiven)
family: Gamma(link = log)
No fixed effect

- Random effects ---————------——-
Family: gaussian(link = identity)

#it --- Variance parameters ('lambda'):

lambda = var(u) for u ~ Gaussian;

#i# batch : 0.02548 [fixed]

of obs: 198; # of groups: batch, 11

--- Residual variation (var = phi * mu"™2) --
phi was fixed to 0.128735 0.128735 0.128735 0.128735 0.157237 ...
- Likelihood values --——----——---—-
#it logLik

logL (P_v(h)): -1157.667

(Non-standard?) ReL: -1175.267

Attempts to explain these discrepancies led to the following observations,
beyond supporting the HLfit results. Discrepancies already occur in the fit
of a simple Gamma GLM (still with log link), where HLfit computations

0this shows how to constrain HLfit fits using an offset. Another way is to use the etaFix
argument (or fixed for function fitme), as etaFix=1ist (beta=c (" (Intercept)"=5.55,
X1=0.08, X2=-0.21, X3=-0.14, "I(X2"2)"=-0.08, "X1:X3"=-0.09, "X2:X3"=-
0.09)). The REMLformula argument further allows to obtain the restricted likelihood,
although no REML estimation is actually performed in this fit since no fixed-effect
coeflicient is estimated.

44

can easily be checked. In this case, the GLM weights being 1, the exact
ML estimates of fixed effects are independent of the ¢ estimate, and it is
easy to check that HLfit gives the same fixed effect estimates as glm does.
Given known fixed effect estimates, the exact likelihood and exact restricted
likelihoods are known functions of ¢, and are also easily checked.

Such comparisons also highlight some subtleties with respect to dispersion
estimation, which shows the more consistent behaviour of spaMM compared
to glm in this respect. method="ML" will provide full ML estimates (exact
for a GLM). This differs from the more confusing output of glm. From the
displayed results of a glm fit, one can estimate ¢ as residual deviance /residual
degrees of freedom, and this is the approrimate REML estimate of ¢ given
by HLfit with method="EQL-" or method="RE(?,%,0)". However, this com-
parison is obscured by the idiosyncrasies of summary.glm (which returns an
estimate of dispersion based on the Pearson residuals, not the deviance resid-
uals). Further, logLik for glm objects does not return a likelihood compara-
ble to those returned by the method="EQL-" fit, but rather the approximate
marginal likelihood returned by HLfit with method="ML({,?,0)".

Lee et al. (2011) also considered a Gamma-inverse Gamma HGLM which
is not implemented in all the above R packages. For this model HLfit and
GenStat exhibit small discrepancies similar to those discussed above.

5.3.2 Further comparisons with glmer, and glmmTMB

Comparisons with glmer (from 1me4 version 1.1.33) were attempted, but it is
not clear how to analyse a structured dispersion model (i.e., a model for the
variance of the residual error) with glmer. Also it does not perform REML
(in any extended definitions for GLMMs) for non-Gaussian response data.
For comparison, we therefore first perform an ML fit without structured
dispersion.

glmmfit <- fitme(y ~ X1*X3+X2xX3+I(X2"2)+(1|batch),
family=Gamma(log), data=wafers)
glmmfit

formula: y ~ X1 * X3 + X2 * X3 + I(X272) + (1 | batch)

Estimation of lambda and phi by ML (P_v approximation of logL).
Estimation of fixed effects by ML (P_v approximation of logL).
family: Gamma(link = log)

H IS SS S Fixed effects (beta) ----—--------
it Estimate Cond. SE t-value
(Intercept) 5.61533 0.05622 99.874
X1 0.08815 0.03366 2.619

45

X3 -0.13903 0.03232 -4.302

X2 -0.21165 0.03266 -6.480

I(X272) -0.10383 0.03258 -3.187

X1:X3 -0.08992 0.04282 -2.100

X3:X2 -0.08765 0.04280 -2.048

Random effects ---———------—-—-
Family: gaussian(link = identity)

#it —--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;

batch : 0.01913

#i# —--- Coefficients for log(lambda):
Group Term Estimate Cond.SE

Dbatch (Intercept) -3.956 0.5158
of obs: 198; # of groups: batch, 11

--- Residual variation (var = phi * mu"™2) --
Coefficients for log(phi) ~ 1
Estimate Cond. SE

(Intercept) -1.833 0.1011
Estimate of phi: 0.1599

#H# = Likelihood values --—-—-—-—————---
logLik
logL (P_v(h)): -1191.019

glmmTMB produces the same result. By contrast, the 1me4: : glmer fit pro-
vides slightly different parameter estimates but the maximized likelihood is
substantially higher, which is intriguing. However, evaluation of the like-
lihood by numerical integration (which is straightforward given the simple
structure of the random effects) shows that spaMM’s and glmmTMB’s approxi-
mations of the likelihood are more accurate than glmer’s one, and that they
more closely maximize the true likelihood. In particular, numerical inte-
gration shows that the log likelihood is —1191.273 for the estimates given
by glmer, which is distinct from glmer’s likelihood value, but very close to
the value given by fitme with default method for the parameters estimates
obtained with glmer:

merfit <- Ilme4::glmer(y ~ X1*X3+X2*X3+I(X2°2)+(1|batch),
family=Gamma(log), data=wafers)

logLik (merfit)

'log Lik.' -1188.672 (df=9)

46

wafers$X.beta <- predict(merfit, re.form=NA)
chk <- fitme(y “(1lbatch) + 0 + offset(X.beta),
family=Gamma(log) ,data=wafers,
fixed=1list (lambda=VarCorr (merfit)$batch,
phi=sigma(merfit)~2))

logLik(chk)
#it P_v
-1191.273

Numerical integration also shows that the likelihood is —1191.02 for pa-
rameters estimates given by fitme, which are therefore the better fit. The
Laplace approximation based on the observed information matrix is P, =
—1191.021.

5.3.3 PQL vs. glmmPQL

spaMM implements further approximations, including Breslow and Clayton’s
(1993) PQL further discussed by Lee and Nelder (1996). See Section 3.5.1 for
an informal definition of PQL. glmmPQL is described as “equivalent to PQL
up to details in the approximations” (Venables and Ripley, 2002), but the
performance of glmmPQL is not a good guide to that of PQL (Rousset and
Ferdy, 2014, Appendix G). One would have to dig into the glmmPQL code to
understand the differences, which are already apparent in non-spatial models.
E.g., one can compare the two following fits

data(wafers)
hfit <- fitme(y ~X1#X3+X2*X3+I(X272)+(1|batch),family=Gamma(log),
data=wafers,method="PQL")
if (require (MASS,quietly = TRUE)) {
gfit <- glmmPQL(y ~X1*X3+X2*X3+I(X2"2),random= ~ 1|batch,family=Gamma(log),
data=wafers)

The full output is not shown to save space, but e.g. ¢ estimates are 0.1648
vs 0.1508, and A estimates are 0.02183 vs 0.01966 (glmmPQL may be closer to
spaMM’s PQL/L method than to PQL). glmmPQL does not return likelihood
values for comparison with spaMM’s ones.

5.4 Negative binomial model

The standard negative binomial model (with variance quadratically related
to the mean) can be fitted using the negbin2 family defined by spaMM:

47

http://kimura.univ-montp2.fr/~rousset/spaMM/RoussetF14AppendixG.pdf

fitme(cases™I(prop.ag/10)+(1|gridcode)
+offset (log(expec)) ,data=scotlip,
family=negbin2() ,method="ML")

formula: cases ~ I(prop.ag/10) + (1 | gridcode) + offset(log(expec))
Estimation of fixed effects by ML (P_v approximation of logL).

Estimation of lambda and NB_shape by 'outer' ML, maximizing logL.

family: negbin2(shape=2.984) (link = log)

- Fixed effects (beta) ---——---—-—--—-
Estimate Cond. SE t-value

(Intercept) -0.3528 0.1604 -2.199

I(prop.ag/10) 0.7148 0.1479 4.834

##t Random effects --———--------—-
Family: gaussian(link = identity)

#it --- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;

#i# gridcode : 2.032e-05

of obs: 56; # of groups: gridcode, 56

-— Likelihood values -———————————-
#i#t logLik

logL (P_v(h)): -171.4703

Such fits are affected by the change in default approximation of likelihood
effective with version 4 of spaMM. negbin can be used as a synonym for
negbin2 but negbin?2 is more clear now that the alternative negbinl model,
with variance ‘linearly” (affinely) related to the mean, is also implemented in
spaMM.

A negbin2 GLM can be represented as the Poisson-Gamma mixture
model, namely as a “Poisson-log Gamma” model according to the seman-
tics of footnote 7, with an individual-level Gamma-distributed random ef-
fect w and v = In(u), such that the mean of the conditional Poisson re-
sponse is of the form exp(XB8 + v) = wexp(XA3), where E(u) = 1 and
Var(u) = 1/(shape parameter of negbin). Thus, it can in principle be fitted
using family=poisson() and rand.family=Gamma(log). The shape param-
eter of negbin should then be compared to 1/, the reciprocal of the variance
of the Gamma random effects. This comparison may provide some insight
into the performance of HGLM methods for non-gaussian random effects.
However, the fit through such a mixed-model representation would use a
Laplace approximation for the likelihood, in contrast to the GLM implemen-
tation which can exactly maximize likelihood. The Laplace approximation is
less accurate for high variance of the individual-level Gamma random effect.

48

Acknowledgements

spaMM development has benefitted from a PEPS grant from CNRS and uni-
versities Montpellier 1 & 2, and from collaborations with Jean-Baptiste Ferdy
and Alexandre Courtiol.

Bibliography

Agresti, A. 2013. “Categorical data analysis,” Wiley, Hoboken, New Jersey,
third edn.

Bates, D., Méachler, M., Bolker, B., and Walker, S. 2015. Fitting Linear
Mixed-Effects Models Using Ime4, Journal of Statistical Software 67, 1—
48.

Bates, D. M., and DebRoy, S. 2004. Linear mixed models and penalized least
squares, Journal of Multivariate Analysis 91, 1-17.

Booth, J. G., and Hobert, J. P. 1998. Standard errors of prediction in gen-
eralized linear mixed models, J. Am. Stat. Assoc. 93, 262-272.

Breslow, N. E., and Clayton, D. G. 1993. Approximate inference in general-
ized linear mixed models, J. Am. Stat. Assoc. 88, 9-25.

Clayton, D., and Kaldor, J. 1987. FEmpirical Bayes estimates of age-
standardized relative risks for use in disease mapping, Biometrics 43, 671
681.

Coull, B. A., and Agresti, A. 2000. Random effects modeling of multiple bi-
nomial responses using the multivariate binomial logit-normal distribution,
Biometrics 56, 73-80.

Davison, A. C. 2003. “Statistical models,” Cambridge Univ. Press.

Diggle, P., and Ribeiro, P. 2007. “Model-based geostatistics,” Springer series
in statistics, Springer, New York.

Diggle, P. J., Thomson, M. C., Christensen, O. F., Rowlingson, B., Obsomer,
V., Gardon, J., Wanji, S., Takougang, I., Enyong, P., Kamgno, J., Remme,
J. H., Boussinesq, M., and Molyneux, D. H. 2007. Spatial modelling and
the prediction of Loa loa risk: decision making under uncertainty, Ann.
Trop. Med. Parasitol. 101, 499-509.

49

Fai, A. H.-T., and Cornelius, P. L. 1996. Approximate F-tests of multiple
degree of freedom hypotheses in generalized least squares analyses of un-

balanced split-plot experiments, Journal of Statistical Computation and
Simulation 54, 363-378.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting
machine., Ann. Statist. 29, 1189-1232.

Geyer, C. J., Wagenius, S., and Shaw, R. G. 2007. Aster models for life
history analysis, Biometrika 94, 415-426.

Guélat, J., and Kéry, M. 2018. Effects of spatial autocorrelation and im-
perfect detection on species distribution models, Methods in Ecology and
FEvolution 9, 1614-1625.

Harville, D. A. 1977. Maximum likelihood approaches to variance component
estimation and to related problems, J. Am. Stat. Assoc. 72, 320-338.

Hastie, T., Tibshirani, R., and Friedman, J. 2009. “The elements of statistical
learning: data mining, inference and prediction,” Springer, 2 edn.

Lee, W., and Lee, Y. 2012. Modifications of REML algorithm for HGLMs,
Stat. Computing 22, 959-966.

Lee, Y., and Nelder, J. A. 1996. Hierarchical generalized linear models, J.
R. Stat. Soc. B 58, 619-678.

Lee, Y., and Nelder, J. A. 2001. Hierarchical generalised linear models: A
synthesis of generalised linear models, random-effect models and structured
dispersions, Biometrika 88, 987-1006.

Lee, Y., Nelder, J. A., and Park, H. 2011. HGLMs for quality improvement,
Applied Stochastic Models in Business and Industry 27, 315-328.

Lee, Y., Nelder, J. A., and Pawitan, Y. 2006. “Generalized linear models with
random effects: unified analysis via H-likelihood,” Chapman & Hall.

Lindgren, F., and Rue, H. 2015. Bayesian Spatial Modelling with R-INLA,
Journal of Statistical Software 63, 1-25.

Lindgren, F., Rue, H., and Lindstrom, J. 2011. An explicit link between
Gaussian fields and Gaussian Markov random fields: the stochastic partial

differential equation approach, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73, 423-498.

50

Matérn, B. 1960. “Spatial Variation: Stochastic models and their application
to some problems in forest surveys and other sampling investigations,”
Ph.D. thesis, Forest Research Institute, Stockholm, Sweden.

McCullagh, P., and Nelder, J. A. 1989. “Generalized linear models,” Chapman
& Hall, second edn.

Molas, M., and Lesaffre, E. 2010. Hurdle models for multilevel zero-inflated
data via h-likelihood, Stat.Med. 29, 3294-3310.

Molas, M., and Lesaffre, E. 2011. Hierarchical generalized linear models: The
R package HGLMMM, J. stat. Software 39, 1-20.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and Sain, S.
2015. A Multiresolution Gaussian Process Model for the Analysis of Large
Spatial Datasets, Journal of Computational and Graphical Statistics 24,
579-599.

Rousset, F., and Courtiol, A. , 2021, spaMM: an R package to fit general-
ized, linear, and mixed models allowing for complex covariance structures,
Presented at the User2021 Conference.

Rousset, F., and Ferdy, J.-B. 2014. Testing environmental and genetic effects
in the presence of spatial autocorrelation, Fcography 37, 781-790.

Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., and Boatwright, P.
2005. A useful distribution for fitting discrete data: revival of the Conway—
Maxwell-Poisson distribution, appl. Stat. 54, 127-142.

Skaug, H. J., and Fournier, D. 2006. Automatic approximation of the
marginal likelihood in non-Gaussian hierarchical models, Comput. Stat.
Data Anal 51, 699-709.

Stein, M. L. 1999. “Interpolation of spatial data: some theory for Kriging,”
Springer-Verlag, New York.

Venables, W. N., and Ripley, B. D. 2002. “Modern applied statistics with S,”
Springer-Verlag, New York, fourth edn.

Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E.,
Walling, C. A., Kruuk, L. E. B.; and Nussey, D. H. 2010. An ecologist’s
guide to the animal model, Journal of Animal Ecology 79, 13-26.

Zimmerman, D. L. 2010. Likelihood-based methods, in A. E. Gelfand, P. J.
Diggle, M. Fuentes, and P. Guttorp (eds.), Handbook of spatial statistics,
pp. 45-56, CRC Press, Boca-Raton (FL).

o1

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/MixedModels_useR2021.pdf
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/MixedModels_useR2021.pdf

Appendices

A Evaluation of the likelihood approximations

An example of Gamma GLMM will here be used to detail the likelihood
approximations, and some other concepts used in spaMM.

By default fitme estimates fixed-effect coefficients by maximizing the
Laplace approximation P,(h) (P_v) for the log-likelihood. Laplace approxi-
mations Ps,(h) (P_bv) of the restricted log-likelihood may also be considered
in REML fits. These approximations can be written

1 0%h
P,(h) =h—0.5In 3 avavil (8)
and
0%h

Pso(h) =h—051n

1
"2 B NOBY) | ©)

where h is the “joint log-likelihood”, and where for a given matrix H, In || H||
is the logarithm of the absolute value of its determinant (the “logdet”). The
definitions and computation of A and of the distinct H matrices involved in
ML and REML fits will now be explained.

For concreteness we reconsider an example from the literature, fitting a
Gamma GLMM to the wafers data, without the residual dispersion model
considered by Lee et al. (2011). The default fit by spaMM is

byobs <- fitme(y “X1%X3 + X2%X3 + I(X2°2) + (1|batch),
family=Gamma(log), data=wafers, method=c("REML"))
logLik(byobs)

P_bv
-1207.473

logLik(byobs, which="P_v")

#i# P_v
-1191.091

while the fit by Lee et al.’s method uses distinct likelihood approximations

pa» and p,, and can be enforced by adding the second specifier "exp" in the
method argument:

52

byexp <- fitme(y “X1%X3 + X2%X3 + I(X2°2) + (1|batch),
family=Gamma(log) , data=wafers, method=c("REML","exp"))

logLik(byexp)
p_bv
-1207.51

logLik(byexp, which="p_v")

p_v
-1191.096

A.1 Conditional and joint log-likelihood

The log-likelihood for each independent draw ¥, of a Gamma GLM can be
written

(i, vy yk) = vIn(vye/p) — v(ye/p) — In(I(v)) — In(y) (10)

where py, is the expected value (here conditional on the realized random
effect), and 1/v is the variance of the residual term. Thus the conditional
likelihood of the data given the realized random effects is

mui <- fitted(byobs)

nu <- 1/residVar(byobs, which="fit")

clik <- with(wafers,sum(nu*log(nu*y/mui)-nu*(y)/mui-log(gamma(nu))-log(y)))
clik

[1] -1180.892

The joint log-likelihood is defined as the sum of this term and of the
log-likelihood of the random effects:

h(p,v, Ay, v) = Z (i, Vi yr) + ZIH(L(W)) (11)

where the sum over k is over all levels of the response variable and the sum
over ¢ is over all levels of the random effect.

The joint log-likelihood is called h-likelihood is the literature stemming
from Lee and Nelder (1996). This includes Molas and Lesaffre (2010), Lee
et al. (2011) and Lee and Lee (2012), upon which spaMM was initially designed.
For this reason, the semantics and notation from these works are widely used

33

in spaMM, although the methods used in the current version of the package
can depart in various ways from theirs. A capital P is here used to distinguish
the Laplace approximations P,(h) and Ps,(h) from the ones used in earlier
works. p,(h) and pg,(h) are known as APHLs (adjusted profile h-likelihoods)
in the h-likelihood framework. This acronym is used in spaMM where it may
also include P,(h) and Pg,(h).

In the present example, the random effects are Gaussian with identity
link, v = v, and dispersion A:

In(L(v)) = — (% + 1n(27r)\)) | (12)

which may be recomputed as

ranefs <- ranef (byobs) [[1]]

lambda_obs <- VarCorr(byobs) [1,"Variance"]

hlik <- clik+with(byobs,sum(-(ranefs~2)/(2*xlambda_obs)
-(log(2*pi*lambda_obs))/2))

hlik

[1] -1173.463

Here the sum is over the 11 values of v =ranef (HLgs) [[1]].
clik and hlik are stored in the output object of the fit, and can be
properly extracted by:

logLik(byobs, which="hlik")

hlik
-1173.463

logLik(byobs, which="clik")

clik
-1180.892

A.2 The gradient and Hessian matrix of conditional likeli-
hood

The gradient is the vector of first-order derivatives, here with respect to the
fixed-effect coefficients and random effects. Its elements can be written as

dei _ O i _ @xip and likewise de; O

08, 0,08, om: ove o *

(13)

o4

in terms of elements of the design matrices X and Z.
The Hessian matrix is the matrix of second-order derivatives with respect
to the same variables. Similar algebra shows that, e.g.

020i 82Ci
= TinZik -
86,00, on2

(14)

In the Laplace all such derivatives are computed in g and v values maximiz-
ing the joint likelihood, and for the resulting value of n;. Together with the
derivative of the log-determinant, this ultimately yields the Laplace approx-
imation, in terms of functions d¢/dn and §%c/On? (third derivatives 9%c/dn?
may also be needed to evaluate the derivative of the log-determinant). This
method is generic for all mixed-effect models defined in terms of a linear
predictor 7).

Howver, more specific expressions and approximations have been consid-
ered in the literature when additionally assuming that the response family is
a GLM family (as is the case for the Gamma GLMM example). This leads
in particular to the distinction between the default Laplace approximation
P, and the alternative approximation p,. This distinction is detailed in the
next Section.

A.3 Expected Hessian approximation for generalized linear
models

We refer to standard notation for a GLM (McCullagh and Nelder, 1989, eq.
2.4). The likelihood of an observation is written in the form

L(y; 0, ¢) = exp{[y0 — b(0)]/a(®) + c(y,)} (15)

Three quantities are distinguished: 6, “the canonical parameter”, which is
what factors with y; u, the expectation of y, and the linear predictor n =
>_;2;Bj. The assumed relationship between n = g(u) defines the link g used,
while the relationship between 6 and p defines the “canonical link”.

In a Gamma GLM, a(¢) = ¢ = 1/v, § = —1/p (canonical link), b(f) =
In(p) = —In(—0) (McCullagh and Nelder, 1989, p. 30). The variance of Y
is b"(0)a(6) = op®

The elements of the gradient VI of the log-likelihood [can be written in
the form

ol 9Ly oy

98, ~ 060,08, 1o

95

We consider the Hessian matrix of [with respect to fixed-effect parameters,
i.e. the matrix whose prth element is 9%1/08,08,. From eq. 16, it involves
either 9%1/0000,, 9*0/0ndB,, or 8*n/0B,08,. The last term is null since 7 is
linear, the second one is exactly null if the link is canonical (n = €), and the
first one is —0u/0p,.

If the link is not canonical, the second term is not null, so it should be
either computed or approximated. The Hessian is often approximated by its
expectation, given by

0%l B 0%l ﬁ+@ 0%0
03,08, |000B,08, = 09008,08.|"

On random sampling of y for given u, E[0l/00] = Ely — u] = 0 hence the
second term is null. Therefore, the second term of the expected Hessian is
zero, and this can be used as an approximation for the equivalent term of
the realized Hessian in the case of a non-canonical link.

(17)

A.4 Using observed versus expected Hessian

For fitting GLMs, a classical method (essentially the one implemented in the
stats::glm function in R), iteratively modifies 3 estimates by AG = H'VI
until the vector of parameter values where the likelihood gradient VI vanishes
is reached. The same gradient-vanishing 3 is the target whether H is the
expected or observed Hessian.

In GLMMs, a similar fitting method can be used, but the gradient of
likelihood is now a function of the Hessian matrix (through the gradient of
its log-determinant with respect to fixed-effect coefficients), and thus the
likelihood approximation and the parameter estimates should differ whether
the gradient computation is based on the expected (approximate) Hessian or
the observed Hessian, when the two matrices differ. The observed Hessian
leads to a Laplace approximation P,, while only the expected Hessian matrix
has been considered in the h-likelihood literature, leading to the likelihood
approximation p,. Similar distinctions holds for restricted likelihood.

A major drawback of the expected Hessian approximation is that it can-
not be applied (at least practically) for non-GLM response families. With
the introduction of such response families in spaMM, methods based on the
observed Hessian were introduced. As various confusions would likely result
from using different default approximation methods for different response
families, the likelihood approximations using the observed Hessian are now
the default ones for all response families, whether GLM ones or not.

This distinction also has implications in terms of quality of approximation
of likelihood, of convergence of iterative algorithms, and of implementation of

56

matrix computations. For example, using the observed Hessian often allows
faster fits for negative binomial GLMMs. Again, it makes no difference for
models with canonical link, such as binomial(logit) or poisson(log). For the
Gamma response family the log link is not canonical, which explains the
difference between P, and p,.

A.5 Hands-on computation of Laplace approximations

We can first compute the elements of the matrices whose “logdet” is re-

quired.!
Generalizing from the gradient expression for GLMs, we can write

oh Onij Onij

a3 Y Yij — Hij) Wij - 18
aﬁp ;(J]) jaﬂij adp ()
oh Onij Onij g

b 5 — 0)Wy _k 19
avk v ;(y J K])w J a/*LZ] a/Uk by ()

where 1;; = By + 171 + Baza + P33 + Bi3x103 + Bosats + Poatd + 24 kvk 18
the linear predictor for the “mean” part and w;; is the diagonal element of
the weight matrix

2
W, = diag(w;;) where w;; = (%) JV"(0:5). (20)
ij
Here with a log link, dpu/0n = Op/0In(p) = p, wij =1 and W, =1

The design matrix for random effects has elements here denoted z;;; for
observation 7j and column k. z;; is the indicator that observation i belongs
to batch k, hence zj 1 = Opatch(k),i- The design matrix for fixed effects has
elements here denoted x;;, for coefficient p of the fixed effects.

We consider a log link (n = In(u)), so the link is not canonical (n # 6)
and we first consider the expected Hessian approximation to the observed
Hessian, as explained in Section A.3. In particular for the derivatives with
respect to (3, of the different factors in (18), we again note that the last
factor has a null derivative, and that the derivative of the middle ones can
be ignored when the (y — p) is approximated by its null expectation. Thus

1 Usefully detailed computations are also presented by Molas and Lesaffre (2010) for a
Poisson “hurdle” HGLM. Our computations differ from theirs as we have only one random
effect in the mean part and the model is Gamma (with a dispersion parameter ¢ =
1/v) rather than Poisson (without any overdispersion parameter). We do not need their
correction term M (6;;5) for truncation of the Poisson distribution.

o7

we only consider the remaining derivative

Onij Oyss —) _ _ Omis Optsg __ Oy _ —Tijr- (21)
Owij 0B, Opij OB, 9B, v

Hence the nonzero elements of the expected Hessian matrix are

o O VZ U <)
8/8]78/87’ Z.]ap 8/Bp 7/] 17,p%%5,7
0?h
: aﬂpavk -7 Z TijpZijk, and (23)

8vk ——uZzwk—l/)\ (24)

Only the second derivatives with respect to the v,’s are involved in the ap-
proximation to the marginal likelihood of the fitted model, which is

1 0°h

pp(h) =h—0.51n T Gvdv

(25)

which we can reconstruct as

designZ <- get_ZALMatrix(byexp)

lambda_exp <- VarCorr(byexp) [1,"Variance"]

nu_exp <- 1/residVar(byexp, which="fit")

tZZ <- crossprod(designZ)

hess <- - nu_exp*tZZ -diag(l/lambda_exp,11) # expected Hessian matriz
logdet <- determinant(hess/(2*pi))$modulus[[1]]

= sum(log(diag (-hess)/(2*pi))) here

(p_v <- logLik(byexp,which="hlik") [[1]]-1logdet/2) # = logLik(byezp, "p_v")

[1] -1191.096

By contrast the diagonal elements of the observed Hessian matrix are
Ph/ovi = —v 3,5 25 ki /i — 1/A and then P, is reconstructed as

lambda_obs <- VarCorr(byobs) [1,"Variance"]
nu_obs <- 1/residVar(byobs, which="fit")
d2logclik_deta2 <- drop(byobs$y/fitted(byobs))
weights_obs <- nu *

crossprod(designZ, diag(d2logclik_deta2) %*%, designZ)
observed Hessian matric:

o8

hess <- - weights_obs -diag(rep(1/lambda_obs,11))
logdet <- determinant(hess/(2*pi))$modulus[[1]]
(P_v <- logLik(byobs,which="hlik") [[1]]-logdet/2) # = logLik(byobs, "P_v")

[1] -1191.091

Likewise the restricted log-likelihood approximations pg, and Fs, can be
reconstructed as follows :

designX <- get_matrix(byobs)
The joint design matriz for fized and random effects:
Xa <- cbind(designX,designZ)

p_bu

tXXa <- crossprod(Xa)

hess <- - nu*tXXa -diag(c(rep(0,7),rep(1/lambda_exp,11)))

logdet <- determinant(hess/(2+%pi))$modulus[[1]]

(p_bv <- logLik(byexp,which="hlik") [[1]]1-logdet/2) # = logLik(byexzp)

[1] -1207.51

P_buv
weights_obs <- nu_obs*
crossprod(Xa, diag(drop(byobs$y/fitted(byobs))) %*x% Xa)
hess <- - weights_obs -diag(c(rep(0,7),rep(1/lambda_obs,11)))
logdet <- determinant(hess/(2*pi))$modulus[[1]]
(P_bv <- logLik(byobs,which="hlik") [[1]]-1logdet/2) # = logLik(byobs)

[1] -1207.473

B Multivariate analyses: the aster example

The aster package has been developed to fit joint GLMs for multivariate re-
sponses with different response families. The basic example from the aster
package considers a life-history dataset recording survival, flowering and num-
ber of flower heads of 570 Echinacea angustifolia individuals other three years
(2002 to 2004). In its original form this example has no random effects and
glm fits could as well be used (as we will see), but we will add shared random-
effects for our purposes.
Data preparation for analysis by aster reads as

59

library(aster)

data(echinacea)

vars <- c("1d02", "1403", "1d04", "f102", "f103", "f104",
"hdct02", "hdct03", "hdct04")

redata <- reshape(echinacea, varying = list(vars), direction = "long",
timevar = "varb", times = as.factor(vars), v.names = "resp")
redata <- data.frame(redata, root = 1)

hdct <- grepl("hdct", as.character(redata$varb))

redata <- data.frame(redata, hdct = as.integer(hdct))

level <- gsub("[0-9]", "", as.character(redata$varb))

redata <- data.frame(redata, level = as.factor(level))

An individual cannot flower (£1 variables) if it has not survived the previ-
ous year (1d variables), and there is no head count (hdct variables) to analyze
for individual plants that did not produce flowers. aster’s way of handling
that is not by specifying missing data as NA. Instead, these data are coded
as 0 and aster handles logical dependencies between variables by the pred
argument that gives the predecessor of a variable in a directed acyclic graph.
So the aster fit itself is achieved by

pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)

fam <- c(1, 1, 1, 1, 1, 1, 3, 3, 3) # response families

aout_cond <- aster(resp ~ varb + level : (nsloc + ewloc) + hdct : pop,
pred, fam, varb, id, root, data = redata, type="conditional")

Its results are consistent to those of three GLM fits with missing data
coded as NA. We can define a function to implement this coding:

asNA.acyclic <- function(data, pred) {

order_pred <- order(pred)

predvars <- names (pred)

ord_desc_vars <- names(pred[order_pred])

for (ordered_it in order_pred) {

descvar <- ord_desc_vars[ordered_it]

predecessor <- pred[descvar]

if (predecessor>0L) {

predvar <- predvars[predecessor]

Predecessor variable being 0 (no survival, or no flowers) means
that descendant wvariable cannot be observed:
datalis.na(datal[predvar]]) | datal[[predvar]]==0L, descvar] <- NA
}

}

return(data)

60

+

Note the names, important here:

varpred <- c(1d02=0, 1d03=1, 1d04=2, £102=1, £103=2, f104=3,
hdct02=4, hdct03=5, hdct04=6)

NAechin <- asNA.acyclic(echinacea, pred=varpred)

and fits by glm with missing data can then be performed after a little
more reshaping. E.g.

recond <- reshape(NAechin, varying = list(vars), direction = "long",

timevar = "varb",times = as.factor(vars), v.names = "resp")

recond$varld <- recond$varfl <- recond$varhdct <- recond$varb

recond$varld[! grepl("1ld", as.character(redata$varb))] <- NA

recond$varfl[! grepl("fl", as.character(redata$varb))] <- NA

recond$varhdct[! grepl("hdct", as.character(redata$varb))] <- NA

1d_fit_by_glm <- glm(resp ~ varld + nsloc + ewloc, family=binomial(), data=recond)
etc.

and two other GLMs, but we skip the details as further comparisons will
be more conveniently performed on the fit by the fitmv function:

(spast <- fitmv(submodels=list(

has_survived=list(resp ~ varld + nsloc + ewloc, family=binomial()),
has_flowers=list(resp ~ varfl + nsloc + ewloc, family=binomial()),
head_count=list(resp ~ varhdct + nsloc + ewloc+pop, family=Tpoisson())),
data=recond))

formula_1: resp ~ varld + nsloc + ewloc

formula_2: resp ~ varfl + nsloc + ewloc

formula_3: resp ~ varhdct + mnsloc + ewloc + pop

Estimation of fixed effects by ML.

Families: 1: binomial(logit); 2: binomial(logit); 3: O-truncated poisson(log)
LSS S Fixed effects (beta) -------—-—-———-

Estimate Cond. SE t-value

(Intercept)_1 1.035694 0.099716 10.3865

varld1d03_1 1.996676 0.250670 7.9654
varldldo4_1 2.299822 0.290504 7.9167
nsloc_1 0.081380 0.012462 6.5301
ewloc_1 0.020498 0.012543 1.6343
(Intercept)_2 -0.557288 0.105435 -5.2856
varf1£103_2 -0.312861 0.152042 -2.0577
varfl1£104_2 0.771270 0.149318 5.1653
nsloc_2 0.062696 0.009277 6.7585
ewloc_2 0.037360 0.009224 4.0504
(Intercept)_3 0.526213 0.153222 3.4343
varhdcthdct03_3 0.036662 0.121748 0.3011
varhdcthdct04_3 0.557703 0.095751 5.8245
nsloc_3 -0.008575 0.006783 -1.2641
ewloc_3 0.012434 0.006545 1.8996
popEriley_3 -0.568350 0.170541 -3.3326
popLf_3 -0.586309 0.186966 -3.1359
popNWLF_3 -0.073558 0.150309 -0.4894
popNessman_3 -0.222755 0.259245 -0.8592
popSPP_3 -0.185061 0.155933 -1.1868
popStevens_3 -0.151462 0.163319 -0.9274
TS S Likelihood values -------------
#i logLik

logL : -1920.922

In the output, each fixed-effect coefficient is indexed by the submodel to
which it belongs. These coefficients are the same as those returned by glm on

61

each submodel. For the comparison to the aster results, the type="conditional"
argument we used in the aster call turns out to be important (see the aster
documentation for details, but retain here that we will compare outputs con-
sistent with those of GLMs fitted in a standard way in R). The different
model fits may still be difficult to compare, as aster used a different sets of
contrasts for the fixed effects, but we can more easily compare predictions of

the conditional models, here for the fits without random effects:

spaMM_pred <- predict(spast) []

NA’s in required variables: prediction not possible for all ’new-
data’ Tows.
NA’s in required variables: prediction not possible for all ’new-
data’ Tows.
NA’s in required variables: prediction not possible for all ’new-
data’ Tows.

aster_pred <- predict(aout_cond, model.type="conditional")
range (c(0,sort (unique (spaMM_pred)))-sort (unique (aster_pred)))

[1] -6.707523e-12 3.600364e-11

the only difference between the predictions is the additional “0” predicted
value by aster in cases where spaMM does not return predictions (for missing
response values in the data).

Instead of reshaping the data to 9 x 570 rows, is is possible to reshape by
year (3 x 570 rows):

yearvars <- c("1d02", "1403", "1d04")

byyear <- reshape(NAechin, varying = list(yearvars), direction = "long",
timevar = "varld",times = as.factor(yearvars), v.names = "respld")

yearvars <- c("f102", "f£103", "f104")

flbyyear <- reshape(NAechin, varying = list(yearvars), direction = "long",
timevar = "varfl",times = as.factor(yearvars), v.names = "respfl")

yearvars <- c("hdct02", "hdct03", "hdct04")

hdctbyyear <- reshape(NAechin, varying = list(yearvars), direction = "long",
timevar = "varhdct",times = as.factor(yearvars), v.names = "resphdct")

Combine results of each reshape in one data. frame:
byyear$varfl <- flbyyear$varfl

byyear$varhdct <- hdctbyyear$varhdct

byyear$respfl <- flbyyear$respfl

byyear$resphdct <- hdctbyyear$resphdct

byyear <- byyear[,c(12,4:6,10,13,14,11,15,16)]

head (byyear)

62

#i#t id pop ewloc nsloc varld varfl varhdct respld respfl resphdct

1.1d02 1 NWLF -8 -11 1d02 £102 hdct02 0 NA
2.1d02 2 Eriley -8 -10 1d02 £102 hdct02 1 0
3.1d02 3 NWLF -8 -9 1402 £102 hdct02 0 NA
4.1d02 4 SPP -8 -8 1d02 £102 hdct02 0 NA
5.1d02 b5 SPP -8 -7 1402 £102 hdct02 0 NA
6.1d02 6 Eriley -8 -6 1d02 f£102 hdct02 1 0

as used in the next fits.
To assess whether an individual random effect affected both survival and
flowering, we can fit

asMM <- fitmv(submodels=1list(
list(respld ~ varld + nsloc + ewloc+(1|id), family=binomial()),
list(respfl ~ varfl + nsloc + ewloc+(1|id), family=binomial()),
list(resphdct ~ varhdct + nsloc + ewloc+pop, family=Tpoisson())),
data=byyear)

The crucial syntactic feature here is that identical random-effect terms

across submodels (here (1]id)) are recognized as a single random effect.
Given that nsloc and ewloc are spatial coordinates, we can also fit a

spatial random effect. Overall, a mixed-effect version of the aster fit may
be

(spasMM <- fitmv(submodels=list(
list(respld ~ varld +Matern(l|nsloc + ewloc), family=binomial()),
list(respfl ~ varfl +Matern(l|nsloc + ewloc), family=binomial()),
list(resphdct ~ varhdct + Matern(1llnsloc + ewloc) + (1lpop), family=Tpoisson())),
data=byyear))

formula_1: respld ~ varld + Matern(l | nsloc + ewloc)

formula_2: respfl ~ varfl + Matern(l | nsloc + ewloc)

formula_3: resphdct ~ varhdct + Matern(i | nsloc + ewloc) + (1 | pop)

Estimation of corrPars and lambda by ML (p_v approximation of logL).

Estimation of fixed effects by ML (p_v approximation of logL).

Estimation of lambda by 'outer' ML, maximizing logL.

Families: 1: binomial(logit); 2: binomial(logit); 3: O-truncated poisson(log)

S e Fixed effects (beta) ————-----—-——-
Estimate Cond. SE t-value
(Intercept)_1 0.75962 0.61683 1.2315
varldl1d03_1 1.99547 0.26999 7.3910
varldldo4_1 2.28710 0.31368 7.2912
(Intercept)_2 -1.20246 0.61985 -1.9399
varflf103_2 -0.36420 0.15846 -2.2984
varflf104_2 0.85205 0.15630 5.4514
(Intercept)_3 -1.24357 0.62015 -2.0053
varhdcthdct03_3 -0.08787 0.12602 -0.6973

varhdcthdct04_3 0.63740 0.09971 6.3925

#H e Random effects ———----———-----
Family: gaussian(link = identity)

—--- Correlation parameters:
1.nu 1.rho

0.16175563 0.0296269

-—- Variance parameters ('lambda')

lambda = var(u) for u ~ Gaussian;

nsloc + e. : 1.242

pop : 0.01177

of obs: 1710; # of groups: nsloc + e., 570; pop, 7
THEEEESS e Likelihood values -------------
#it logLik

logL (p_v(h)): -1841.509

63

NA
NA
NA
NA
NA
NA

Note the large gain in log-likelihood, suggesting that these data are better
fitted by models with a shared spatial random effect than by distinct spatial
linear trends on each response (but we will not pursue this question here).

Now suppose that for these individuals, we had recorded some measure of
individual fecundity and of subsequent growth, and wished to assess whether
there is a trade-off between fecundity and growth stemming from latent indi-
vidual factors. Simulated data incorporating joint random effects on growth
and feco with a negative correlation cor=-0.5 can be produced by

simfun <- function(nind=570L, cor=-0.5, lambda=c(0.2,0.1)) {
u <- rnorm(2*nind)
laml <- lambdal[1]
lam2 <- lambdal[2]
covmat <- matrix(c(laml,sqrt(laml*lam2)*cor,sqrt(laml*lam2)*cor,lam2) ,ncol=2)
L <- t(chol(covmat))
v <- L %*% matrix(u,nrow=2)
1fh <- data.frame(
id=seq_len(nind),

growth=rgamma(nind,shape=1/0.2, scale=0.2*exp(1+v[2,])),
feco= rpois(nind, lambda = exp(l+v[1,])))
1fh

}
set.seed(123)
1fh <- simfun()

To specify a model with such a correlated structure of random effect, the
mv (.) syntax should be used, as follows: a term (mv(1,2)|id) declares a
random effect with two correlated values for each level of the id grouping
variable, whose correlated values each affect the successive submodels given
as arguments of mv (). In this respect, it is conceptually similar to a random-
coefficient term of the form (submodel|id), if submodel were a factor for
the two submodels specified as arguments of mv(.) (the latter syntax could
perhaps be used, if the data were reshaped to different rows for different
responses, but we try to avoid such reshaping).

Using this syntax, the fit can be achieved by

(troff_fit <- fitmv(submodels=list(
list(feco ~ 1+(0+mv(1,2)|id), family=poisson()),
list(growth ~ 1+(0+mv(1,2)1id), family=Gamma(log))),
data=1fh))

formula_1: feco ~ 1 + (0 + mv(1, 2) | id)

64

formula_2: growth ~ 1 + (0 + mv(1, 2) | id)

Estimation of ranCoefs and phi by ML (P_v approximation of logL).
Estimation of fixed effects by ML (P_v approximation of logL).

Estimation of phi_2 by 'outer' ML, maximizing logL.

Families: 1: poisson(log); 2: Gamma(log)

- Fixed effects (beta) —----—--------

Ht Estimate Cond. SE t-value

(Intercept)_1 1.0111 0.03125 32.35

(Intercept)_2 0.9824 0.02323 42.29

T I REBEIEN GIRCER ——o———emomeee—e
Family: gaussian(link = identity)

-—- Random-coefficients Cov matrices:
Group Term Var. Corr.

id .mv1l 0.2056

id .mv2 0.08889 -0.419

of obs: 570; # of groups: id, 570

T e St Residual variation --—-—-—-—-—-—-

* response 2 (Gamma) residual var = phi * mu~2:
phi estimate was 0.206801

#H - Likelihood values -—-——--—---—-----
#i#t logLik
logL (P_v(h)): -2171.307

The output reads as that for a random-coefficient term. In particular,
the optional O+ in the left-hand side of the random-effect term so that (as
in the quantitative-genetics application of fitmv) contrasts are not used:
spaMM reports the variance estimates of the random effects each affecting
each response variable, rather than the variance of an “Intercept” random
variable affecting both response variables, and the variance of a “contrast”
random effect added to the Intercept one for the second response variable.

Here the output looks reasonably good. But estimates of the correlation
parameter may have a high variance, and designing a reliable workflow for
inferring them may need more work, particularly when one of the response
variables is binary.

65

Index

X (design matrix), 5 inverse-Gamma, 28, 39
Z (design matrix), 11 random coefficients, 30
B (fixed-effect coefficients), 5 Random-slope, see Random effects, ran-
1 (linear predictor), 11 dom coefficients
A (variance of random effects u), 5 REML, 19, 39
p (expected response), 11 definition, 19
v (smoothness of correlation), 6 drawbacks, 19
ppv (restricted likelihood approxima- Response families
tion), 6 binomial, 22, 25
pw (likelihood approximation), 6 COMPoisson, 13

(variance of residual error), 5 Gamma, 26
(scale of correlation), 6 Negative-binomial, 42
(random effect), 11 poisson, 23

¢
p
u
v (random effect on linear scale), 11

APHLs, 48

Correlation model
arbitrary given, 12
Cauchy, 11
Conditional autoregressive (CAR),
23
IMRF, 11, 35
Matérn, 5

GLM

canonical form, 50
HGLM, 25
Joint GLM, 29
logdet, 48
Multivariate response, 32
Prediction, 9

Random effects
Beta, 25
Gamma

log link, 44

66

	Quick start for non-spatial models
	An example of geostatistical analysis (spatial LMM)
	Understanding and fitting the spatial model
	Prediction
	Point prediction
	Prediction variance

	General features of spaMM
	Model formulation
	Response families
	Overview
	The COMPoisson family

	The main procedures in spaMM
	Fitting functions
	Post-fit functions

	Multiple comparisons
	Control of the fitting methods
	Objective functions in ML, REML and PQL fits
	Implications of REML for post-fit inferences
	Inner iterations versus outer optimization
	Numerical methods

	Further examples
	Spatial GLMMs
	Basic syntax
	A classic example with autoregressive random effects

	Beta random effects and binomial logit-Beta model
	Gamma GLMM, HGLM, and joint GLMs

	Random-slope model
	Multivariate response
	Zero-altered (hurdle) models
	Fitting
	Point-prediction intervals

	Comparison with alternative software and literature results
	Procedures for geostatistical models (or contrived to such usage): MASS::glmmPQL, lmer, geoRglm, glmmTMB
	Interpolated Markov random fields via spaMM and INLA
	Gamma GLMM with non-canonical link
	A comparison with published estimates
	Further comparisons with glmer, and glmmTMB
	PQL vs. glmmPQL

	Negative binomial model

	Bibliography
	Appendices
	Evaluation of the likelihood approximations
	Conditional and joint log-likelihood
	The gradient and Hessian matrix of conditional likelihood
	Expected Hessian approximation for generalized linear models
	Using observed versus expected Hessian
	Hands-on computation of Laplace approximations

	Multivariate analyses: the aster example
	Index

